E-Waste Dust Sample SCCPs

The GCxGC system is comprised of the LECO quadrupole, liquid nitrogen-cooled thermal modulator in a 7890B GC. The high resolution mass spectrometer was a LECO Research GC-HR-4D research prototype. The LC-MS method and the mass spectrometer settings were as follows.

Methods

Overview

A prototype of a novel ion source for use in GCxGC-HR-TOFMS based on the Folded Flight Path® (FFP®) mass analyzers has been developed. The primary goal was to minimize the capabilities for analysis of short-chained chlorinated paraffins and other POPs.

Introduction

Commercial chlorinated paraffins are derived from the free radical chlorination of n-alkane molecules. These end products are categorized into three groups: Short-Chain Chlorinated Paraffins (SCCPs), C10 to C13; Medium-Chain Chlorinated Paraffins (MCCPs), C14 to C17; and Long-Chain Chlorinated Paraffins (LCCPs), C18 to C30.

Ion Source

A new, dual chamber ion source was developed to operate in any of three ionization modes (electron ionization, positive chemical ionization, and electron capture negative ionization) and a prototype of a novel ion source for use in GCxGC-HR-TOFMS based on the Folded Flight Path® (FFP®) mass analyzers has been developed. The preliminary results from evaluating its capabilities for analysis of short-chained chlorinated paraffins and other POPs are presented.

E-Waste Dust Sample SCCPs

The study focuses on short-chain chlorinated paraffins (SCCPs). Due to their high electron affinity, the analysis of chlorinated paraffins is typically performed by mass spectrometry with electron capture negative ionization (ECNI).

Results

The chromatographic patterns of multiple constituents within the chlorinated paraffin standards were characterized.

Acknowledgments

The authors would like to thank Mr. John Martin and Mrs. Goodwin of National Metrology Institute of South Africa (NMISA) for providing samples.