Enhanced Quantitation and Reporting Features for ASTM D5769 Using ChromaTOF®

Abstract

Creating fully customizable reports that meet the variety of needs outlined in the ASTM D5769 Standard Test Method for Determination of Benzene, Toluene, and Total Aromatics in Finished Gasolines by Gas Chromatography/Mass Spectrometry can be a challenge. With LECO's *ChromaTOF* brand software for the Pegasus[®] BT GC-TOFMS, fully integrated hardware control, data processing, and reporting features are combined with new quantitation types to allow a seamless experience that exceeds method criteria. From collecting wide linear dynamic range and full-mass-range time-of-flight mass spectral data to reporting deconvoluted peaks, ion ratio results, and using multiple internal standards, the *Pegasus* BT system operating on ChromaTOF provides an excellent solution for a variety of established methods, including ASTM D5769.

Gas Chromatograph	Agilent 7890 with Agilent 7693 Liquid Autosamp
Injection	0.1 μL injection, split 1200:1 @ 260 °C
Carrier Gas	He @ 1.0 ml/min, Constant Flow
Column	Rxi-1ms, 30 m x 0.25 mm i.d. x 1.00 μ m coating (Restek, Bellefonte, PA, USA)
Oven Program	55 °C (1 min), to 70 °C @ 20 °C/min (4 min), to 220 °C @ °C/min (5 min)
Transfer Line	280 °C
Mass Spectrometer	LECO Pegasus BT
Ion Source Temperature	250 °C
Mass Range	35-550 m/z
Acquisition Rate	10 spectra/s

Christina N. Kelly, Joseph E. Binkley, Lorne M. Fell | LECO Corporation, Saint Joseph, Michigan, USA

Name	Quant
1,4-Diethylbenzene	141
1,4-Diethylbenzene	151
1,4-Diethylbenzene	132

Instrument Checks

Figure 1 (left): Triplicate injections of 0.01 mass % 1,4diethylbenzene are shown. According to Section 6.2.3 of the method, the signal-to-noise (S/N) ratio of 0.01 mass % 1,4-diethylbenzene at mass 134 must be consistently greater than 5. The table above shows an average S/N greater than 100, easily surpassing method requirements.

Figure 2 (right): The deconvoluted Peak True spectrum of 1,2,3-Trimethylbenzene is shown along with a table of relevant ion ratio intensity values as stipulated in Section 9.2.5 of the method.

lon (m/z)	Required Intensity	Observed Intensity
120	30-60	42
105	100	100
91	7-15	11

Peak True - sample "Cal 1 ASTM D5769", Benzene, 1, ndance) 1000 900 900 900 900 900 900 9								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Peak Tr ndance)	ue -)	sampk	e "Cal 1	ASTM	D5769",	Benzene,	1,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
900 - 800 - 700 - 600 - 500 - 400 - 300 - 200 - 100 - 0 - M/Z 40 60 80	1000) –						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	900) –						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	800) –						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	700) –						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	600							
400 - 300 - 200 - 100 - 0	500							
300	400							
200 - 100 - 0	300						.90 91	5
100 - 100 -	200) –					78.9	Ę
0 <u> </u>	100) –					ĬĬ	
M/Z 40 60 80	0		<u></u>		l		<u>⊔u I.I I.p. </u>	
		M/Z	40		60		80	

08 0

Analyte	R ²
Benzene	0.99994
Toluene	0.99980
Ethylbenzene	0.99998
Benzene, 1,3-dimethyl- + 1,4-dimethyl	0.99998
1,2-Dimethylbenzene	0.99998
Benzene, (1-methylethyl)-	1.00000
Benzene, propyl-	1.00000
Benzene, 1-ethyl-3-methyl-	0.99950
Benzene, 1-ethyl-4-methyl-	0.99980
1,3,5-Trimethylbenzene	0.99996
Benzene, 1-ethyl-2-methyl-	0.99998
Benzene, 1,2,4-trimethyl-	1.00000
Benzene, 1,2,3-trimethyl-	0.99996
Indane	0.99988
Benzene, 1,4-diethyl- + butylbenzene	0.99994
Benzene, 1,2-diethyl-	0.99992
Benzene, 1,2,4,5-tetramethyl-	0.99992
Benzene, 1,2,3,5-tetramethyl-	0.99986
Naphthalene	0.99992
Naphthalene, 2-methyl-	0.99950
Naphthalene, 1-methyl-	0.99954
Average Value	0.99987

QC Check

Peak Table - QC Check							
	- III -	_	_	_	_		
Peak #	Name	R.T. (s)	QC Wt %	QC Expected	QC Pass	Quant Masses	<u>^</u>
6	Benzene	230.514	1.03	0.95 - 1.05	Pass	XIC(78.05±0.3)	
14	Toluene	377.725	9.06	8.55 - 9.45	Pass	XIC(92.06±0.3)	
21	Ethylbenzene	479.134	3.10	2.85 - 3.15	Pass	XIC(106.08±0.3)	
22	m-Xylene + p-Xylene	485.834	3.05	2.85 - 3.15	Pass	XIC(106.08±0.3)	Ξ
24	o-Xylene	504.236	3.07	2.85 - 3.15	Pass	XIC(106.08±0.3)	
38	1,2,4-trimethylbenzene	568.041	2.95	2.85 - 3.15	Pass	XIC(120.09±0.3)	
83	1,2,3,5-tetramethylbenzene	625 .5 45	1.94	1.80 - 2.20	Pass	XIC(134.11±0.3)	
104	Naphthalene	654.048	1.08	0.90 - 1.10	Pass	XIC(128.06±0.3)	
Total*	Total		25.29				-
•		111					Þ

Figure 5 (above): Sample report with fully user-customizable, automatically populated elements display the results for a gasoline sample, showing values for both calibrated and uncalibrated analytes, as well as total aromatics.

Sample Report

Figure 4 (left): Built-in software checks allow for quick review of quality control (QC) samples and system readiness. Fully-customizable workspaces and automated data processing allow streamlined data display for easier interpretation of QC results.