
Non-targeted analysis of contaminants in dust using multidimensional chromatography, high-resolution mass spectrometry and advanced software tools

Introduction

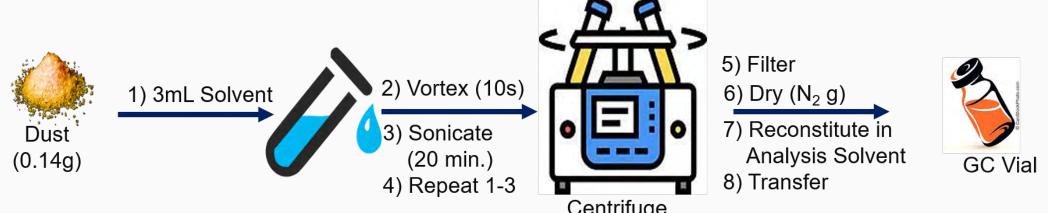
- Dust is complex: Numerous, chemically diverse constituents in a wide concentration range
- Dust can be used to estimate human exposure to contaminants (e.g., Pesticides, PAHs, flame retardants)
- Analysis of dust has primarily been conducted using targeted methods and a variety of instrumental techniques

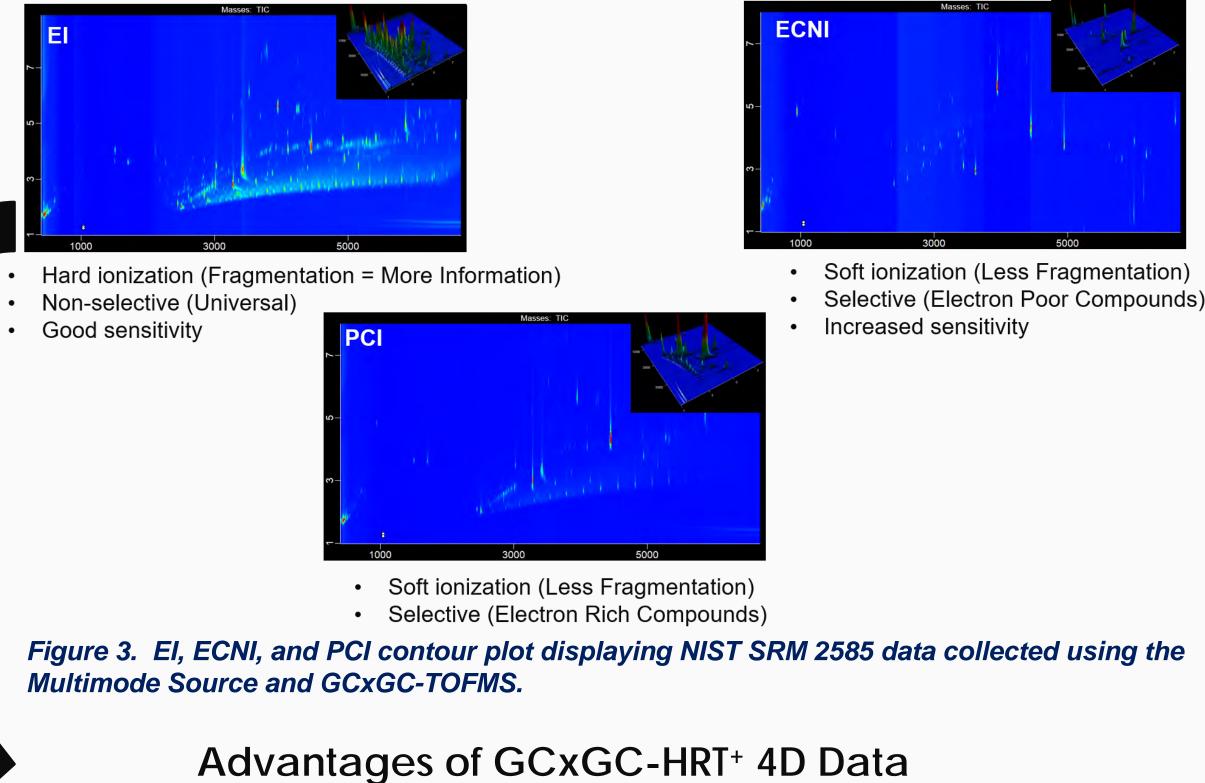
Objectives

- 1) Untargeted characterization of dust extracts using GCxGC and a novel multimode source with high resolution time-of-flight mass spectrometry
- 2) To perform quantitative analysis of Polychlorinated Paraffins (PCPs) in dust

Dust Sample Preparation

- Dust: 1) NIST SRM 2585, 2) Office Sample, and 3) Household Sample
- Extraction:




Figure 2. Dust general extraction procedure.

Instrument Acquisition Parameters

Gas Chromatograph	Agilent 7890B with LECO Dual Stage Quad Jet Modulator						
Injection	2µL liquid injection, Splitless, 70°C to 300°C at 500°C/min						
Carrier Gas	He @ 1.0 mL/min, Corrected Constant Flow						
Primary Column	HP-5MS UI, 30 m x 0.25 mm i.d. x 0.25 µm						
Secondary Column	BPX-50, 0.60 m x 0.10 mm x 0.10 μm						
Temperature Program	80°C (1 min) ramp 20°C/min to 140°C (Hold 30 mins), then ramp to 200°C at 10°C/min, and ramp 1.5°C/min to 300°C (Hold 5 mins). Secondary oven maintained +5 °C relative to primary oven						
Modulation Period	8.0 seconds; modulator maintained +15 °C relative to secondary oven						
Transfer Line	300 °C						
Mass Spectrometer	LECO Pegasus [®] HRT ⁺ 4D						
Source Temperature	EI, 250°C; PCI, ECNI, 165°C						
Acquisition Mode	High Resolution, $R \ge 25,000$ for m/z 219, Mass Accuracy ≤ 1 ppm						
Ionization	EI, PCI/ECNI (Reagent Gas = CH_4)						
Mass Range (m/z)	EI 50-1000; PCI 60-1000; ECNI 30-1000						
Acquisition Rate	MMS 125 sps						
Mass Spectrometer Source Temperature Acquisition Mode Ionization Mass Range (m/z)	300 °C LECO Pegasus® HRT+ 4D EI, 250°C; PCI, ECNI, 165°C High Resolution, $R \ge 25,000$ for m/z 219, Mass Accuracy ≤ 1 ppm EI, PCI/ECNI (Reagent Gas = CH ₄) EI 50-1000; PCI 60-1000; ECNI 30-1000						

David E. Alonso and Joseph E. Binkley; LECO Corporation, Saint Joseph, Michigan, USA

NIST SRM: EI, ECNI & PCI-HRT⁺ 4D Data

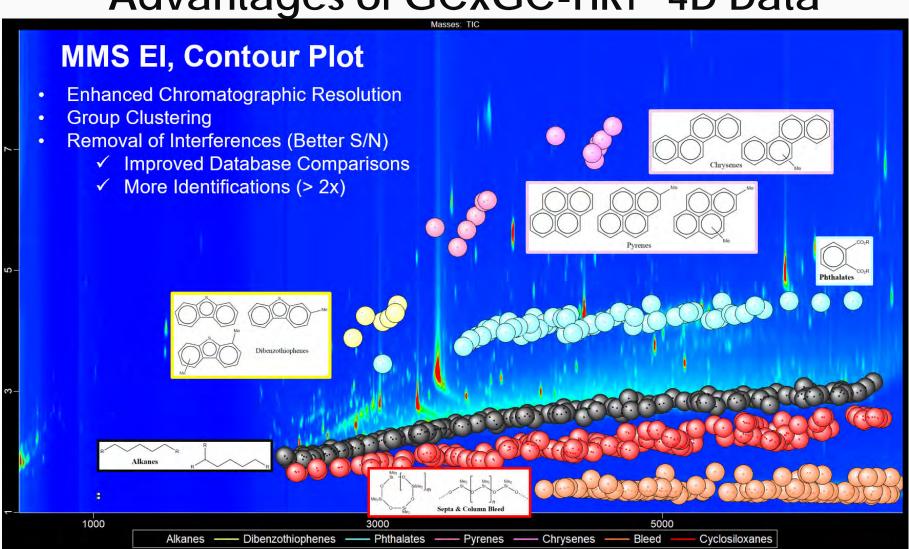
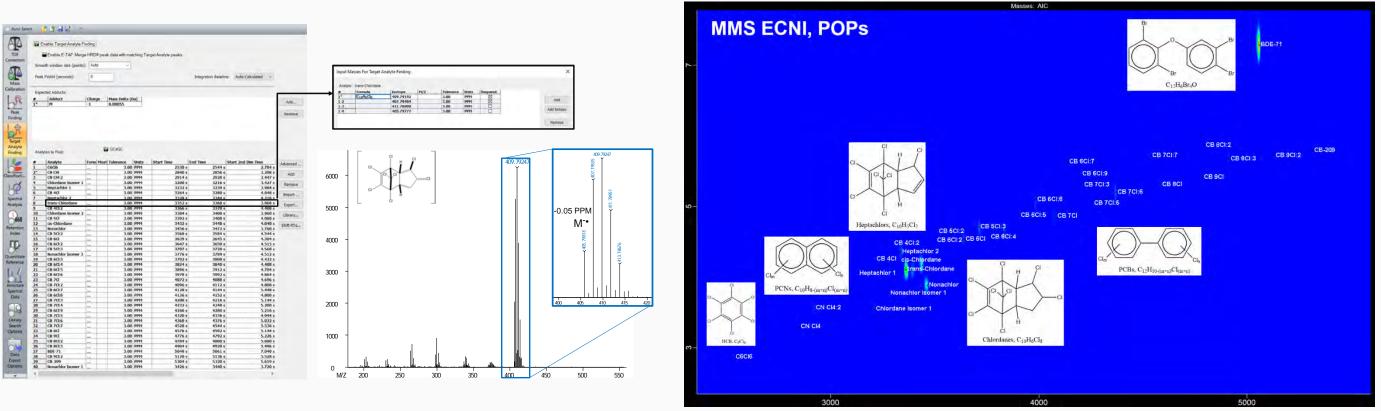



Figure 4. El Plot displaying some of the major compounds in SRM 2585.

	Name	Formula	R.T. (s)	Similarity	Name	Formula	R.T. (s)	Similarity	Name	Formula	R.T. (s)	Similarity
	Benzyl alcohol	C ₇ H ₈ O	496, 2.064	890	β-Calacore ne	C ₁₅ H ₂₀	2168, 3.810	807	2,6-Diphenylpyridine	C ₁₇ H ₁₃ N	3672, 5.640	795
	p-Cresol	C ₇ H ₈ O	520, 2.112	826	n-Tridecan-1-ol	C ₁₃ H ₂₈ O	2184, 2.968	935	1,8-Diazacyclotetradecane-2,7-dione	C ₁₂ H ₂₂ N ₂ O ₂	3704, 7.416	874
	Acetophenone	C ₈ H ₈ O	528, 2.143	942	Amyl salicylate	C ₁₂ H ₁₆ O ₃	2192, 3.600	940	Tributyl acetylcitrate	C ₂₀ H ₃₄ O ₈	3712, 3.592	874
	Phenylethyl Alcohol	C ₈ H ₁₀ O	576, 2.344	884	Cetene	C16H32	2248, 2.240	934	Tert-octyldiphenylamine	C ₂₀ H ₂₇ N	3776, 4.472	768
ns	Octanoic acid	C ₈ H ₁₆ O ₂	608, 2.240	908	2-Tetradecanone	C14H28O	2264, 2.512	920	N-Methyl-N-benzyltetradecanamine	C ₂₂ H ₃₉ N	3864, 3.228	850
	Oxazolidin-2-one	C ₃ H ₅ NO ₂	616, 3.967	950	Epicedrol	C15H26O	2304, 2.800	904	Methyl dehydroabietate	C ₂₁ H ₃₀ O ₂	3936, 4.576	864
	Benzenamine, 2-methoxy-	C ₇ H ₉ NO	640, 2.768	839	Diphenylamine	C ₁₂ H ₁₁ N	2344, 3.330	886	Octadecanamide	C ₁₈ H ₃₇ NO	4016, 4.016	790
	3-Dodecene, (Z)-	C ₁₂ H ₂₄	648, 1.893	917	Benzophenone	C13H10	2360, 3.247	937	Benzo[ghi]fluoranthene	C ₁₈ H ₁₀	4072, 6.888	879
	Benzaldehyde, 3,4-dimethyl-	C ₉ H ₁₀ O	664, 2.592	888	Tributyl phosphate	C ₁₂ H ₂₇ O ₄ P	2400, 2.304	917	Triphenyl pho sphate	C ₁₈ H ₁₅ O ₄ P	4080, 6.432	878
	p-Acetyltoluene	C ₉ H ₁₀ O	672, 2.678	937	Cinnamaldehyde, α-pentyl-	C14H18O	2400, 2.520	913	Diphenyl 2-ethylhexyl phosphate	C ₂₀ H ₂₇ O ₄ P	4152, 4.824	802
	Methyl salicylate	C ₈ H ₈ O ₃	688, 2.632	771	8-Heptadecene	C ₁₇ H ₃₄	2464, 1.950	919	Isopropylphenyl diphenyl phosphate	C ₂₁ H ₂₁ O ₄ P	4432, 6.004	815
	Naphthalene	C ₁₀ H ₈	688, 2.755	952	n-Hexyl salicylate	C13H18O3	2464, 2.448	929	Benz[a]anthracene, 7-methyl-	C19H14	4608, 7.312	865
	Ethanol, 2-phenoxy-	C ₈ H ₁₀ O ₂	720, 3.064	809	Triaminotriazine	C₃H ₆ N ₆	2472, 3.040	882	Tri-m-tolylphosphate	C ₂₁ H ₂₁ O ₄ P	4800, 6.536	847
	Benzothiazole	C ₇ H₅NS	752, 3.504	909	3-Phenoxy-4-fluorobenzaldehyde	C13H9EO	2472, 3.064	886	Tri-p-cresyl phosphate	C ₂₁ H ₂₁ O ₄ P	4880, 6.568	761
	Nonanoic acid	C9H18O2	760, 2.648	873	Tetradecanenitrile	C14H27N	2488, 2.288	884	Perylene	C ₂₀ H ₁₂	5032, 8.200	1
	1-Decanol	C10H22O	792, 2.456	920	4-(1,1-Dimethylheptyl)phenol	C ₁₅ H ₂₄ O	2512, 2.528	895	Squalene	C 30H 50	5152, 3.480	924
	1H-Inden-1-one, 2,3-dihydro-	C₂H8O	864, 4.076	815	Veramoss	C ₁₀ H ₁₂ O ₄	2520, 3.040	902	Cholesta-4,6-dien-3-ol, (3β)-	C ₂₇ H ₄₄ O	5272, 4.364	861
	Indole	C ₈ H ₇ N	880, 4.418	870	Oplopanone	C15H26O2	2592, 2.816	803	Cholesta-3,5-diene	C ₂₇ H ₄₄	5328, 4.288	910
	5-Acetoxymethyl-2-furaldehyde	C ₈ H ₈ O ₄	888, 4.200	915	Myristic acid	C14H28O2	2616, 2.400	892	Piperine	C17H19NO3	5344, 8.344	921
	Sesamol	C ₇ H ₆ O ₃	912, 4.422	754	Benzyl Benzoate	C ₁₄ H ₁₂ O ₂	2640, 3.360	926	17αH-Trisnorhopane	C ₂₇ H ₄₆	5384, 4.864	805
	Benzamide	C ₇ H ₇ NO	968, 6.027	854	Vertofix Coeur	C ₁₇ H ₂₆ O	2656, 2.672	856	Benzo[b]chrysene	C ₂₂ H ₁₄	5416, 7.983	790
	Capric acid	C10H20O2	1008, 3.184	897	9-Eicosene, (E)-	C ₂₀ H ₄₀	2672, 2.053	903	p,p'-Dioctyldiphenylamine	C ₂₈ H ₄₃ N	5456, 4.752	909
	Capric acid	C ₁₀ H ₂₀ O ₂	1016, 3.344	898	Benzenemethanol, 3-phenoxy-	C ₁₃ H ₁₂ O ₂	2680, 3.688	842	28-Nor-17α(H)-hopane	C ₂₉ H ₅₀	5712, 4.632	900
	Benzaldehyde, 4-hydroxy-	C7H6O2	1024, 5.384	935	1H-Indole-3-carboxaldehyde	C ₉ H ₇ NO	2720, 5.016	920	Cholesterol	C ₂₇ H ₄₆ O	5848, 4.848	895
	Tropeolin	C ₈ H ₇ NS	1032, 5.216	864	Versalide	C18H26O	2840, 2.888	872	α-Tocopheryl acetate	C31H22O3	6040, 4.160	904
	E-11,13-Tetradecadien-1-ol	C14H26O	1064, 3.037	922	Methyl palmitate	C ₁₇ H ₃₄ O ₂	2936, 2.455	795	Cholesta-3,5-dien-7-one	C ₂₇ H ₄₂ O	6072, 5.394	922
	2(3H)-Furanone, dihydro-5-pentyl-	C9H16O2	1064, 4.352	874	Palmitic acid	C ₁₆ H ₃₂ O ₂	3016, 2.848	898	Campesterol	C ₂₈ H ₄₈ O	6112, 4.872	844
	1-Tetradecene	C ₁₄ H ₂₈	1128, 2.600	944	Phenylethyl salicylate	C ₁₅ H ₁₄ O ₃	3040, 3.920	854	Cholest-4-en-3-one	C ₂₇ H ₄₄ O	6160, 5.232	936
	Dodecanal	C ₁₂ H ₂₄ O	1208, 3.352	916	Benzoguanamine	C₀H₀N₅	3176, 5.963	825	17α(H),21β(H)-Homohopane	C ₃₁ H ₅₄	6168, 4.648	846
	Coumarin	C ₉ H ₆ O ₂	1408, 8.263	901	2-(2H-Benzotriazol-2-yl)-5-methylphenol	C ₁₃ H ₁₁ N ₃ O	3272, 4.584	845	Stigmasterol	C ₂₉ H ₄₈ O	6184, 4.824	808
	Acenaphthylene	C ₁₂ H ₈	1472, 6.872	925	Fluoranthene	C ₁₆ H ₁₀	3272, 5.208	933	Cholesta-4,6-dien-3-one	C ₂₇ H ₄₂ O	6224, 5.416	876
	1-Dodecanol	C ₁₂ H ₂₆ O	1504, 4.008	954	1-Octadecanol	C18H38O	3280, 2.808	945	y-Sitosterol	C ₂₉ H ₅₀ O	6320, 4.880	919
	Diiso butyl maleate	C ₁₂ H ₂₀ O ₄	1624, 4.464	900	Stearic acid	C18H36O2	3464, 3.112	800	Stigmasta-3,5-dien-7-one	C ₂₉ H ₄₆ O	6528, 5.765	
	1-Dodecanamine, N,N-dimethyl-	C ₁₄ H ₃₁ N	1704, 3.616	942	Hexadecanamide	-	3512, 3.712	890	Cholesterol, 7-oxo-		6568, 6.768	
	Tridecanal	C ₁₃ H ₂₆ O	1744, 4.485	890	p-Terphenyl	C ₁₈ H ₁₄	3560, 5.192	822		0		
	Lauric acid	C ₁₂ H ₂₄ O ₂	2120, 4.040	906	trans-3,5-Dimethoxystilbene		3656, 5.136	877	Δνα	<u>88</u>	80/10	<u>))))</u>

Table 2. Representative compounds in SRM 2585.

NIST SRM 2585: Representative Compounds

NIST SRM 2585: Halogenated Organic Compounds

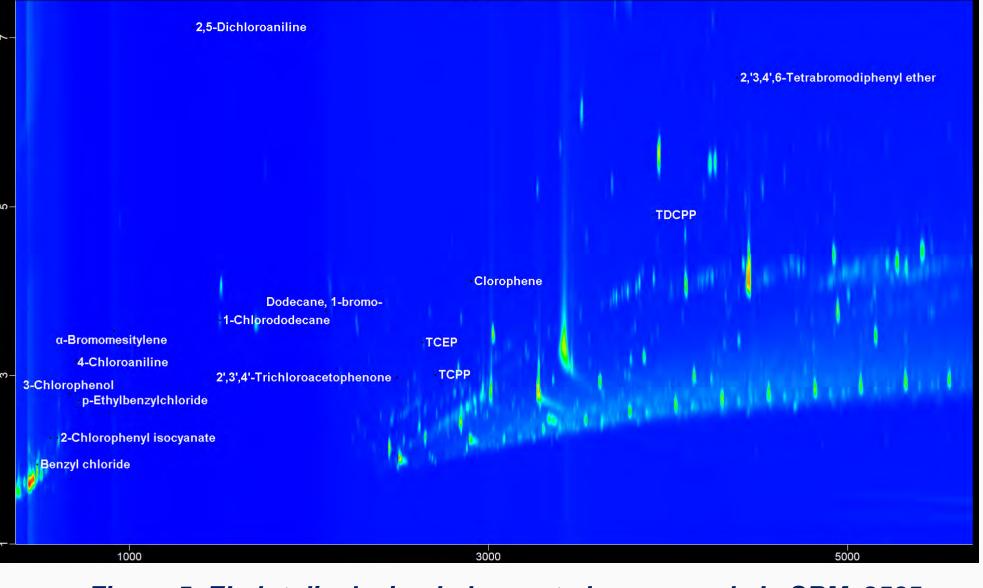


Figure 5. El plot displaying halogenated compounds In SRM 2585.

Name	Formula	R.T. (s)	Similarity	Mass Accuracy (ppm)
Benzyl chloride	C7H7CI	488, 1.952	873	0.87
Benzyl bromide	C ₇ H ₇ Br	560, 2.263	866	0.54
2-Chlorophenyl isocyanate	C ₇ H ₄ CINO	600, 2.264	927	0.31
3-Chlorophenol	C ₆ H ₅ ClO	664, 2.784	896	1.32
4-Chloroaniline	C ₆ H ₆ CIN	696, 3.160	913	1.52
p-Ethylbenzyl chloride	C ₉ H ₁₁ Cl	704, 2.624	884	0.10
4-Chloroaniline	C ₆ H ₆ CIN	704, 3.184	816	1.13
p-Ethylbenzylchloride	C ₉ H ₁₁ Cl	720, 2.704	931	0.21
α-Bromomesitylene	C ₉ H ₁₁ Br	912, 3.528	861	-0.23
3,4-Dichlorophenyl isocyanate	C ₇ H₃Cl₂NO	944, 3.358	820	1.93
2,5-Dichloroaniline	C ₆ H ₅ Cl ₂ N	1352, 7.124	933	-0.25
1-Chlorododecane	C ₁₂ H ₂₅ Cl	1504, 3.656	949	-0.80
Dodecane, 1-bromo-	$C_{12}H_{25}Br$	2096, 3.768	873	N/A
2',3',4'-Trichloroacetophenone	C ₈ H₅Cl₃O	2488, 2.976	781	N/A
TCEP	$C_6H_{12}CI_3O_4P$	2632, 3.392	893	N/A
ТСРР	C ₉ H ₁₈ Cl ₃ O ₄ P	2704, 3.008	918	N/A
ТСРР	$C_9H_{18}CI_3O_4P$	2728, 3.064	816	N/A
Clorophene	C ₁₃ H ₁₁ CIO	2904, 4.120	824	1.22
ТДСРР	$C_9H_{15}CI_6O_4P$	3912, 4.904	902	N/A
2,'3,4',6-Tetrabromodiphenyl ether	C ₁₂ H ₆ Br ₄ O	4384, 6.528	831	0.34
2,2',4,4',5,-Pentabromodiphenyl ether	C ₁₂ H ₅ Br ₅ O	5056, 7.296	892	-0.45

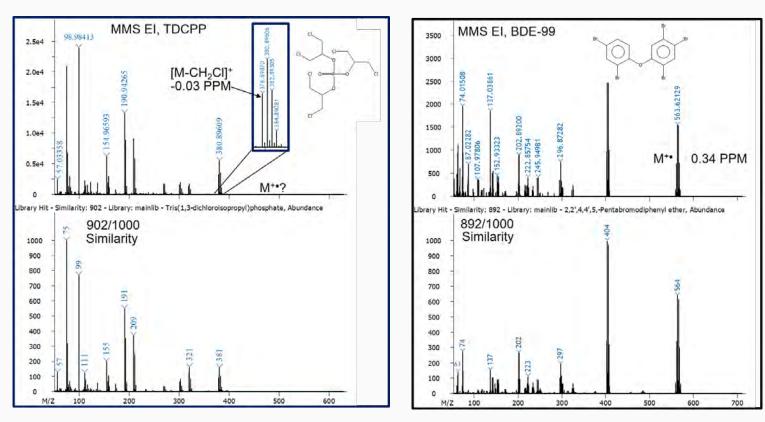


Table 3. SRM 2585 selected halogenated compounds.

Figure 6. Peak True & library El mass spectra for TDCPP and BDE-99 in SRM 2585.

ECNI: Locating Trace POPs in NIST, Office & House Dust

Figure 7. Target Analyte Finding (TAF) method for POPs in dust samples.

Target POP	R.T. (s)	NIST (area)	Office (area)	House (area)	
C ₆ Cl ₆	2536, 2.872	66777	10364	485688	
CN Cl4	2848, 3.304	13710			
CN Cl4:2	2920, 3.568	143301			
Chlordane Isomer 1	3208, 3.552	62129			
Heptachlor 1	3232, 4.128	15887			
CB 4Cl	3272, 4.192	21645	8827		
Heptachlor 2	3336, 4.360	215913			
trans-Chlordane	3360, 4.112	1730979	3025	11470	
CB 4CI:2	3368, 4.552	10321	1454		
Chlordane Isomer 2	3392, 4.096	266412			
CB 5Cl	3400, 4.224	54160	50338		
Nonachlor Isomer 1	3432, 3.848	9577			
cis-Chlordane	3440, 4.176	624489			
Nonachlor	3464, 3.888	596640		3023	
CB 5CI:2	3584, 4.720	44766	55571		
CB 6Cl	3640, 4.536	23649	33324		
CB 6CI:2	3648, 4.520	23937			
CB 5CI:3	3712, 4.712	304119	305058		
Nonachlor Isomer 3	3784, 4.656	98500			
CB 6CI:3	3800, 4.576	44400	46349		

Figure 8. ECNI plot displaying POPs in SRM 2585.

Target POP	R.T. (s)	NIST (area)	Office (area)	House (area)
CB 6CI:4	3832, 4.640	285099	324443	
CB 6CI:5	3904, 4.872	85405	83716	
CB 6CI:6	3984, 5.096	280450	328292	
CB 7Cl	4080, 4.864	149348	108803	
CB 7CI:2	4104, 4.952	68723	50837	
CB 6CI:7	4136, 5.632	39203	47433	
CB 6CI:8	4144, 4.976	27026	22346	
CB 7CI:3	4208, 5.304	92038	91365	
CB 7CI:4	4240, 5.376	38110	38962	
CB 6CI:9	4272, 5.392	67431	66771	
CB 7CI:5	4328, 5.120	26105	19932	
CB 7CI:6	4368, 5.200	397534	369028	
CB 7CI:7	4536, 5.720	86694	109695	
CB 8Cl	4584, 5.312	119235	53370	
CB 9Cl	4784, 5.416	13906		
CB 8CI:2	4792, 5.864	27430	15635	
CB 8CI:3	4912, 5.672	94752	58564	
BDE-71	5056, 7.288	5480469	433778	663837
CB 9CI:2	5128, 5.720	51490	10114	
CB-209	5312, 5.792	9879		

Polychlorinated Paraffins: Cloud Quant

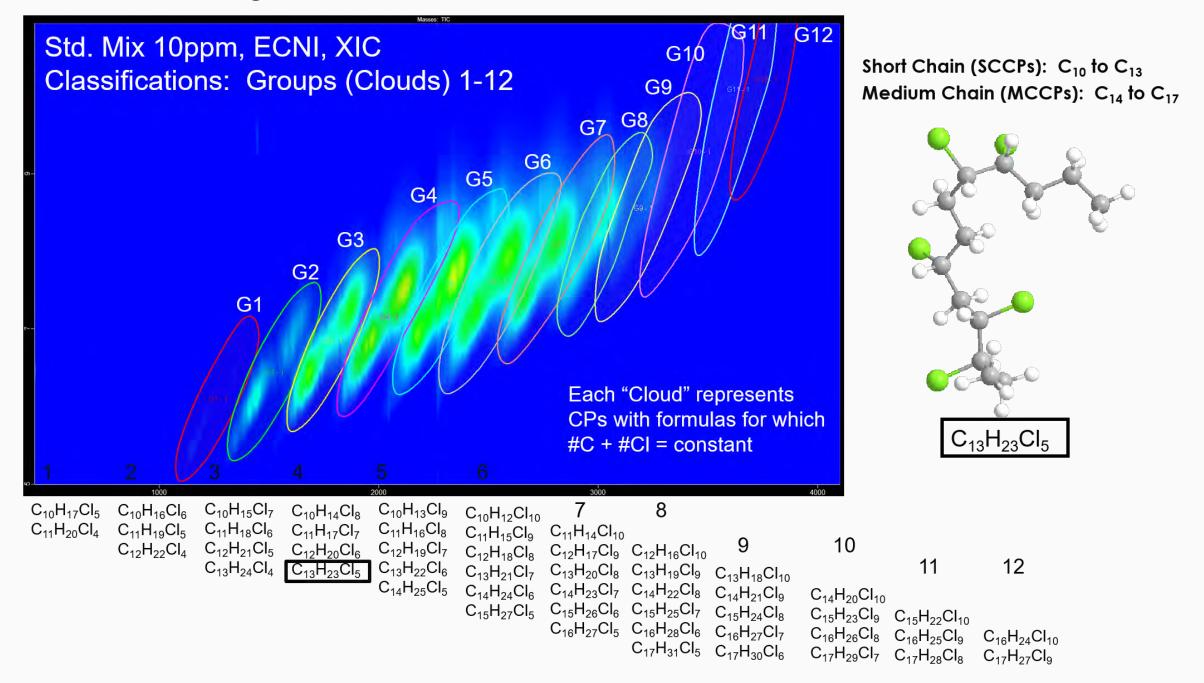


Figure 9. ECNI plot for PCPs in a calibration standard mix. Each group (cloud) region represents PCPs for which the number of carbon + chlorine atoms is constant.

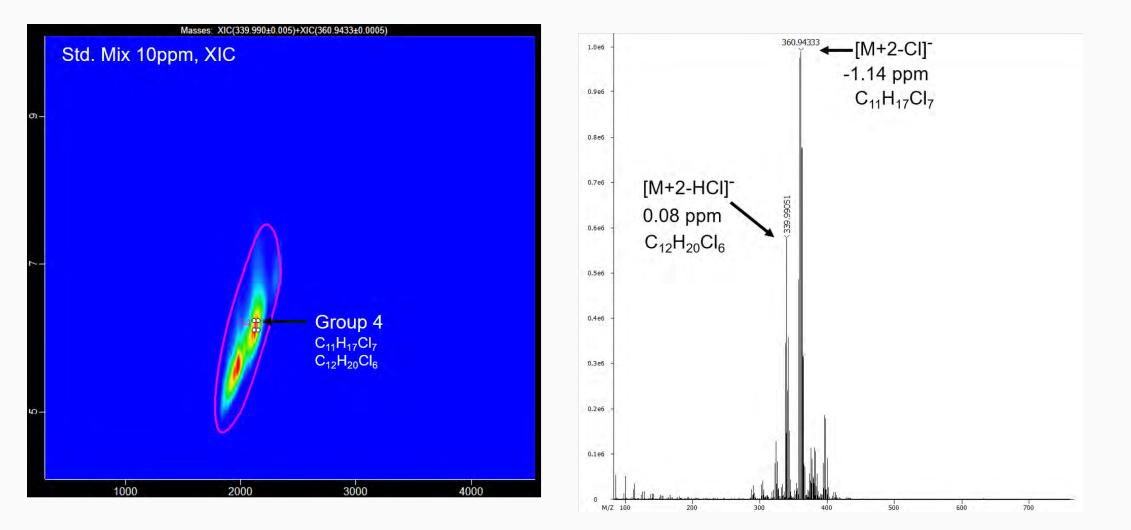


Figure 10. ECNI Plot for Group 4 PCPs with formulas $C_{11}H_{17}CI_7$ and $C_{12}H_{20}CI_6$. Mass accuracy values for the most abundant isotope in each cluster was -1.14 & 0.08 ppm respectively.

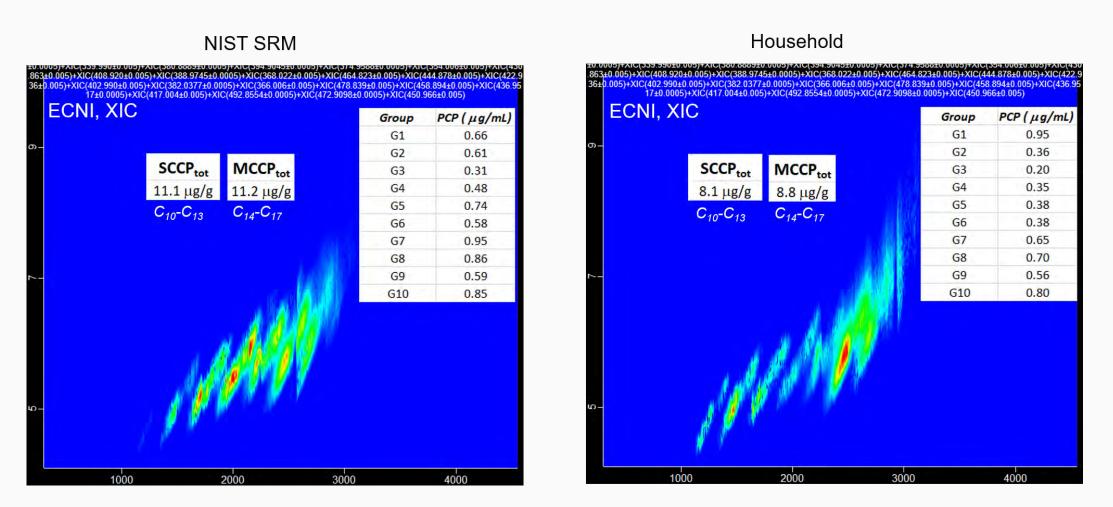


Figure 11. ECNI Plot for SCCPs and MCCPs in the NIST SRM and a household dust sample. Summary

✓ HRT & MMS technology are valuable tools for the analysis of complex samples ✓ The highly ordered, comprehensive contour plots can be used to target trace POPs in dust with pinpoint accuracy

✓ POPs in Dust: SRM 2585 >> Office Dust > Household Samples

✓ Quantitative analysis of PCPs in dust samples was conducted using GCxGC-ECNI-TOFMS