

Leveraging CI-H Mass Defect Plots for the Identification of Halogenated Organic Contaminants

Jonathan D. Byer¹, <u>Mehran Alaee²</u>, Karl Jobst³, Grazina Pacepavicius², and Joe Binkley¹

¹LECO Corporation, St Joseph, MI, USA; ²Environment Canada, Burlington, ON, Canada; ³Ontario Ministry of the Environment, Etobicoke, Canada

Introduction

• Time-of-flight mass spectrometry (TOFMS) is unsurpassed for non-target analysis because full range mass spectra are **A** acquired simultaneously with minimal mass bias at acquisition rates suitable for narrow gas chromatographic peaks. This provides a number of advantages, including the possibility of deconvolving chromatographic interferences using modern software, further enhancing the ability to isolate and identify a greater number of compounds.

- Mass defect is the difference between the nominal and exact masses of a compound or its fragments¹.
- Halogenated compounds have characteristic mass defects and isotope patterns that make them readily distinguishable from most other compound classes^{2,3}.

Results

• Mass defect (CI-H) can be calculated according to the following \geq equations, where the IUPAC mass is the observed mass and the scaling factor for chlorine substituted for hydrogen equals I 34/33.960479: $\overline{\mathbf{O}}$

CI-H Scaled Mass = IUPAC Mass \times Scaling Factor

CI-H Mass Defect = CI-H Scaled Mass – Nominal CI-H Scaled Mass

In this study we used non-target analysis in the form of **CI-H** mass defect plots, to identify halogenated contaminants in eels (Anguillia rostrata) from Lake Ontario, Canada.

- The HRT was operated in El mode with filament energy of 36 eV, a mass range from m/z 35 to 850, and an acquisition rate of 6 spectra/s.
- Data were processed using ChromaTOF-HRT[®] software, which included peak finding with mass spectral deconvolution.

herbicide safener used to protect crops against damage caused by pretilachlor. It is typically used on rice, so its occurrence in Lake Ontario fish was unexpected.

> Figure 6: Workflow for the identification of compounds using CI-H mass defect plot. (1) Select and display masses of interest on chromatogram; (2) select peak; (3) deconvoluted mass spectrum; (4) compare to NIST or other library database; (5) verify correct chemical formula with accurate mass data.

-0.2592

-0.2616

0.17891 382.1789

0.17878 384.1788

Figure 1: (a) Total ion chromatogram and (b) combined mass spectrum of a pooled eel sample from Lake Ontario, Canada. The combined mass spectrum was generated by expanding the caliper over the entire chromatographic run, which was dominated by ions corresponding to siloxanes and hydrocarbons. More than 900 peaks were identified using high resolution deconvolution in the ChromaTOF-HRT software.

Figure 4: (a) Extracted ion chromatgrams (XIC) for the six most abundant ions, as well as (b) the mass spectrum of a peak discovered from points on the mass defect plot, and (c) Wiley 10 library mass spectrum of 6-methoxynonachlorodiphenyl ether. The accurate mass data and the library hit suggest that the unknown compound is a methoxynonachlorodiphenyl ether.

Conclusions

-1.524

-0.151

- A number of legacy contaminants such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polychlorinated diphenyl ethers (PCDEs), dieldrin, mirex, hexachlorobenzene (HCB) and other pesticides, as well as a number of previously unknown compounds were tentively identified in the pooled sample.
- Many breakdown products and metabolites were also detected such as DDD, DDE, and methoxy nonachlorodiphenyl ether.
- CI-H mass defect plots are a useful tool for filtering through complex data for the identification of halogenated contaminants.
- This technique functions as a screening tool for the identification of unknowns, and in the future, may be used as a form of fingerprinting to compare samples.

References

- 1. Sleno L. (2012); J Mass Spectrom. 47(2): 226-36
- 2. Taguchi VY, Nieckarz RJ, Clement RE, Krolik S, Williams R. (2010); JASMS. 21(11): 1918-21
- 3. Jobst KJ, Shen L, Reiner EJ, Taguchi VY, Helm PA, McCrindle R, Backus S. (2013); Anal Bioanal Chem. 405: 3289-97
- 4. Byer JD, Lebeuf M, Alaee M, Brown RS, Trottier S, Backus S, Keir M, Couillard CM, Casselman J, Hodson PV. (2013); Chemosphere. 90(5): 1719-28

Contact Information: jonathan_byer@leco.com

381.7408 C8Cl5[37]Cl3

383.7384 C8Cl4[37]Cl4