Comprehensive Analysis of Microplastics and Their Adsorbed Environmental Matrix Constituents Using a Combination of Thermal Desorption and Pyrolysis with GCxGC-HRTOFMS

Introduction

- Plastic production began in the early 20th century
- Plastic waste is expected to grow to a total of 26 billion tons by 2050
- Plastic materials are very useful materials, but there are major issues:
 - Breakdown products (e.g., microplastics) can be detrimental to life
 - Additional harmful substances in the environment are often adsorbed by microplastics, creating a difficult matrix to analyze

Study Objective

To characterize air filter samples for microplastics and associated chemicals desorption and pyrolysis with multi-dimensional gas using thermal time-of-fliaht resolution chromatography-high mass spectrometry (TD/Py-GCxGC-HRTOFMS)

Analytical Platform

Figure 1. Pegasus[®] HRT⁺ 4D and Multi-Mode Source (MMS)

Instrument Parameters

Gas Chromatograph	Agilent 7890B with LECO Dual Stage QuadJet™ Modulator
Sample Introduction A	TD, Split 10:1 (3 min) \rightarrow Splitless, 50 °C to 300 °C at 10 °C/s
Sample Introduction B	Pyr, 10:1 \rightarrow Splitless (3 min), 50 °C to 600 °C at 60 °C/s
Carrier Gas	He @ 1.4 mL/min, Corrected Constant Flow
Primary Column	Rxi-5ms, 30 m x 0.25 mm i.d. x 0.25 µm
Secondary Column	Rxi-17Sil MS, 1.3 m x 0.10 mm x 0.10 μm
Temperature Program	50 °C (2 min) ramp 10 °C/min to 205 °C, then ramp to 300 °C at 20 °C/min to 300 °C (hold 15 min). Secondary oven maintained +5 °C relative to primary oven
Modulation Period	3.0 seconds; modulator maintained +15 °C relative to secondary oven
Transfer Line	300 °C
Mass Spectrometer	LECO Pegasus HRT ⁺ 4D
Source Temperature	EI, 250 °C; PCI, ECNI, 165 °C
Acquisition Mode	High Resolution, $R \ge 25,000$ for m/z 219, Mass Accuracy ≤ 1 ppm
Ionization	EI, PCI/ECNI (Reagent Gas = CH ₄)
Mass Range (m/z)	EI 50-1000; PCI 60-1000; ECNI 30-1000
Acquisition Rate	200 spectra/s

Air Sample Collection Locations

Figure 2. High volume samplers with PM10 Quartz filters (Right) were used to collect samples for 24 hour periods. Samples were collected by Imperial College researchers at Detling (Rural) and Marylebone (Urban) sites in the UK (Left).

David E. Alonso and Joseph E. Binkley; LECO Corporation, Saint Joseph, Michigan, USA

Sample Preparation and Introduction

Figure 3. Two 4 mm or one 8 mm diameter sample(s) were transferred to quartz tubes (Left). Tube was placed in a GL Sciences Optic-4 Inlet (Right) for thermal desorption and pyrolysis.

Sample 1, Thermal Desorption (TD): Methods and Results

Figure 4. TD-EI contour plot displaying the location of different classes of compounds.

Table 2. TD-EI Sample 1, non-targeted processing results – representative compounds.

Name	Formula	R.T. (s)	Similarity	РРМ	Name	Formula	R.T. (s)	Similarity	PPM	Name	Formula	R.T. (s)	Similarity	PPM
Furan, 2-methyl-	C₅H ₆ O	141, 1.944	893	1.77	Benzonitrile, 2-methyl-	C ₈ H ₇ N	573, 3.449	843	0.8	2-Ethyl-1-dodecanol	C ₁₄ H ₃₀ O	999, 2.271	833	N/A
1,4-Dioxin, 2,3-dihydro-	$C_4H_6O_2$	195, 2.120	824	-0.26	Pyranone	C ₆ H ₈ O ₄	579, 3.112	828	0.73	(E)-2,6-Dimethoxy-4-(prop-1-en-1-yl)phenol	C ₁₁ H ₁₄ O ₃	1008, 3.240	879	0.25
Pyrazine	$C_4H_4N_2$	213, 2.408	820	0.77	2-Propen-1-one, 1-phenyl-	C ₉ H ₈ O	588, 3.136	847	1.29	1-Dodecanol, 2-methyl-, (S)-	C ₁₃ H ₂₈ O	1011, 2.196	802	N/A
Pyrazine	$C_4H_4N_2$	228, 2.596	793	0.25	p-Menthan-1-ol	C ₁₀ H ₂₀ O	600, 2.460	919	N/A	Benzoic acid, 2-ethylhexyl ester	C ₁₅ H ₂₂ O ₂	1011, 2.608	907	N/A
Cyclopentane, 1,2,4-trimethyl-	C ₈ H ₁₆	243, 2.016	791	0.99	Ethanone, 1-(4-methylphenyl)-	C ₉ H ₁₀ O	615, 2.888	843	1.38	Methyl tetradecanoate	C ₁₅ H ₃₀ O ₂	1014, 2.296	792	0.65
1H-Pyrrole, 2-methyl-	C_5H_7N	306, 2.392	871	0.4	Decanal	C ₁₀ H ₂₀ O	627, 2.271	942	N/A	Cotinine	C ₁₀ H ₁₂ N ₂ O	1023, 3.912	859	1.42
Maleic anhydride	$C_4H_2O_3$	309, 3.064	938	-0.24	1-Heptanol, 2-propyl-	C ₁₀ H ₂₂ O	633, 2.192	918	N/A	α-Hexylcinnamaldehyde	C ₁₅ H ₂₀ O	1038, 2.744	850	-0.6
4-Cyclopentene-1,3-dione	$C_5H_4O_2$	333, 3.328	892	-0.88	1,4:3,6-Dianhydro-α-d-glucopyranose	C ₆ H ₈ O ₄	636, 3.296	873	-0.54	Syringylacetone	C ₁₁ H ₁₄ O ₄	1053, 3.448	843	0.8
2-Heptanone	C ₇ H ₁₄ O	336, 2.336	847	1.33	Ethanol, 2-phenoxy-	C ₈ H ₁₀ O ₂	645, 2.928	827	0.46	Isopropyl myristate	C ₁₇ H ₃₄ O ₂	1077, 2.188	944	-0.15
4-Cyclopentene-1,3-dione	$C_5H_4O_2$	339, 3.061	901	-0.11	Piperidine, 2-propyl-, (S)-	C ₈ H ₁₇ N	678, 2.040	831	0.74	Ethanedione, diphenyl-	C ₁₄ H ₁₀ O ₂	1083, 3.552	937	0.58
2(5H)-Furanone	$C_4H_4O_2$	366, 3.776	926	0.1	Formamide, N-cyclohexyl-	C ₇ H ₁₃ NO	678, 3.456	815	0.57	2-Pentadecanone, 6,10,14-trimethyl-	C ₁₈ H ₃₆ O	1092, 2.223	900	0.94
1,2-Cyclopentanedione	$C_5H_6O_2$	378, 2.928	918	0.33	Undecanal	C ₁₁ H ₂₂ O	711, 2.344	937	N/A	β-Phenylpropiophenone	C ₁₅ H ₁₄ O	1107, 3.416	919	0.33
Pyridine, 2-ethenyl-	C ₇ H ₇ N	381, 2.760	893	0.84	Formamide, N,N-dibutyl-	C ₉ H ₁₉ NO	711, 2.656	909	0.2	Caffeine	C ₈ H ₁₀ N ₄ O ₂	1107, 4.136	914	0.82
Benzaldehyde	C ₇ H ₆ O	405, 2.768	932	0.26	Indole	C ₈ H ₇ N	711, 3.448	896	0.77	1-Hexadecanol	C ₁₆ H ₃₄ O	1113, 2.292	941	N/A
Furan, 2-pentyl-	$C_9H_{14}O$	432, 2.184	905	0.84	1,2-Benzenedicarboxylic acid	C ₈ H ₆ O ₄	726, 3.504	958	N/A	Dimethyl palmitamine	C ₁₈ H ₃₉ N	1131, 2.096	908	0.03
Pyridine, 2,4,6-trimethyl-	$C_8H_{11}N$	435, 2.504	861	0.68	2-Pyrrolidinecarbonitrile, 5-oxo	C ₅ H ₆ N ₂ O	747, 3.984	844	0.99	Hexadecanoic acid, methyl ester	C ₁₇ H ₃₄ O ₂	1140, 2.240	925	-0.49
Octanal	C ₈ H ₁₆ O	441, 2.327	932	N/A	Nicotine	C ₁₀ H ₁₄ N ₂	786, 2.768	917	0.4	4-(2-Phenylvinyl)pyridine, trans-	C ₁₃ H ₁₁ N	1149, 3.681	792	-0.81
Benzyl chloride	C7H7CI	456, 2.872	832	0.95	Vanillin	C ₈ H ₈ O ₃	795, 3.536	844	-0.26	trans-Sinapaldehyde	C ₁₁ H ₁₂ O ₄	1185, 3.656	812	1.02
2-Aminocyanoacetamide	$C_3H_5N_3O$	465, 1.320	885	N/A	trans-Isoeugenol	C ₁₀ H ₁₂ O ₂	831, 2.880	847	0.73	Chalcone	C ₁₅ H ₁₂ O	1191, 3.548	818	-1.01
1-Hexanol, 2-ethyl-	C ₈ H ₁₈ O	465, 2.344	935	N/A	1-Dodecanol	C ₁₂ H ₂₆ O	840, 2.248	920	N/A	m-Aminophenylacetylene	C ₈ H ₇ N	1227, 1.344	828	1.04
p-Cymene	C ₁₀ H ₁₄	465, 2.410	813	0.37	Phthalimide	C ₈ H ₅ NO ₂	843, 3.608	912	0.31	Benzene, 1,1'-(1,3-butadiyne-1,4-diyl)bis-	C ₁₆ H ₁₀	1269, 3.952	853	0.07
2H-Pyran-2-one	$C_5H_4O_2$	474, 3.877	864	1.07	2-Ethyl-1-dodecanol	C ₁₄ H ₃₀ O	864, 2.216	902	N/A	Methyl dehydroabietate	C ₂₁ H ₃₀ O ₂	1374, 2.528	869	0.21
Benzeneacetaldehyde	C ₈ H ₈ O	483, 3.136	909	0.73	1-Dodecanamine, N,N-dimethyl-	C ₁₄ H ₃₁ N	894, 2.120	909	0.16	Cyclohexane, 1,3,5-triphenyl-	C ₂₄ H ₂₄	1416, 2.592	853	1.44
2-Pyrrolidinone, 1-methyl-	C₅H ₉ NO	483, 3.520	934	-0.48	n-Tridecan-1-ol	C ₁₃ H ₂₈ O	915, 2.304	912	N/A	Squalene	C ₃₀ H ₅₀	1530, 2.345	841	-0.68
2-Cyclohexen-1-one, 3-methyl-	C ₇ H ₁₀ O	495, 3.072	820	0.64	2,2-Dimethylindene, 2,3-dihydro-	C ₁₁ H ₁₄	918, 2.784	791	0.24	Cholesta-3,5-diene	C ₂₇ H ₄₄	1569, 3.036	821	-0.22
1-Octanol	C ₈ H ₁₈ O	504, 2.272	829	N/A	1,3-Isobenzofurandione, 4,5-dimethyl-	C ₁₀ H ₈ O ₃	921, 3.456	806	1.38	Pyridine, 2,4,6-triphenyl-	C ₂₃ H ₁₇ N	1617, 2.088	858	-0.37
2-Pyrrolidinone	C ₄ H ₇ NO	513, 3.416	951	-0.4	Cedrol	C ₁₅ H ₂₆ O	948, 2.656	913	0.82	19-Norcholesta-1,3,5(10)-trien-6-one	C ₂₆ H ₃₈ O	1686, 1.944	829	1.12
2,5-Furandicarboxaldehyde	$C_6H_4O_3$	519, 3.264	829	1.16	2-Methyl-1-undecanol	C ₁₂ H ₂₆ O	957, 2.206	879	N/A	Stearyl palmitate	C ₃₄ H ₆₈ O ₂	1962, 1.736	788	0.86
1-Heptanol, 6-methyl-	C ₈ H ₁₈ O	522, 1.961	812	N/A	Octane, 1,1'-oxybis-	C ₁₆ H ₃₄ O	975, 2.112	938	N/A					
2,5-Pyrrolidinedione, 1-methyl-	C ₅ H ₇ NO ₂	525, 3.531	888	1.11	1-Tetradecanol	C ₁₄ H ₃₀ O	984, 2.289	913	N/A	Similar	itv Δ	A 87	1/100)()
(S)-(+)-6-Methyl-1-octanol	$C_9H_{20}O$	570, 2.351	792	N/A	n-Hexyl salicylate	C ₁₃ H ₁₈ O ₃	990, 2.659	817	1.53	Giilliai			1/100	10
Succinimide	$C_4H_5NO_2$	570, 3.952	931	0.36	γ-Dodecalactone	C ₁₂ H ₂₂ O ₂	990, 2.880	890	N/A					

Figure 5. TD-EI Sample 1 pollutants: PAHs and hetero-PAHs.

Sample 1 (TD-EI): Methods and Results, Continued

Table 3. TD-EI Sample 1, Polyaromatic Hydrocarbons

lame	Formula	Obs RI	Lib. RI	R.T. (s)	Similarity	PPM
aphthalene, 2-methyl-	C ₁₁ H ₁₀	1309	1297 ± 10(53)	711, 2.984	830	0.47
aphthalene, 1-methyl-	C ₁₁ H ₁₀	1327	1307 ± 10(54)	726, 2.960	823	1.23
,6-Diisopropylnaphthalene	C ₁₆ H ₂₀	1736	1728 ± 4(16)	1020, 2.720	794	1.62
henanthrene	C ₁₄ H ₁₀	1810	1776 ± 13(63)	1068, 3.552	935	0.79
nthracene	C ₁₄ H ₁₀	1820	1786 ± 15(49)	1074, 3.539	750	0.72
nthracene, 9-ethenyl-	C ₁₆ H ₁₂	1885		1113, 3.504	872	0.06
henanthrene, 2-methyl-	$C_{15}H_{12}$	1925	1898 ± 11(4)	1137, 3.464	869	0.3
henanthrene, 1-methyl-	$C_{15}H_{12}$	1935	1910 ± 24(7)	1143, 3.464	885	0.55
nthracene, 1-methyl-	C ₁₅ H ₁₂	1955	1959 ± 17(6)	1155, 3.528	889	0.39
aphthalene, 2-phenyl-	$C_{16}H_{12}$	2000	1978 ± 9(3)	1182, 3.528	862	0.05
henanthrene, 2,5-dimethyl-	C ₁₆ H ₁₄	2038		1203, 3.416	793	-0.01
henanthrene, 2,7-dimethyl-	$C_{16}H_{14}$	2049	2028 ± 0(1)	1209, 3.424	816	1.06
nthracene, 1,4-dimethyl-	C ₁₆ H ₁₄	2065		1218, 3.480	838	0.62
henanthrene, 2,3-dimethyl-	C ₁₆ H ₁₄	2076	2056 ± 2(2)	1224, 3.480	861	0.98
henanthrene, 4,5-dimethyl-	C ₁₆ H ₁₄	2081		1227, 3.520	861	0.82
henanthrene, 1,7-dimethyl-	C ₁₆ H ₁₄	2092	2053 ± 1(2)	1233, 3.540	784	0.68
luoranthene	C ₁₆ H ₁₀	2097	2059 ± 17(42)	1236, 3.805	942	0.17
,6-Dihydro-4H-benz[de]anthracene	C ₁₇ H ₁₄	2114		1245, 3.416	765	0.97
henanthrene, 9,10-dimethyl-	C ₁₆ H ₁₄	2124	2093 ± 2(2)	1251, 3.576	723	1.08
yrene	C ₁₆ H ₁₀	2124	2103 ± 20(40)	1251, 3.848	887	0.79
-Ethyl-2-methylphenanthrene	C ₁₇ H ₁₆	2157		1269, 3.352	752	1.27
henanthrene, 2,3,5-trimethyl-	C ₁₇ H ₁₆	2189	2142 ± 0(1)	1287, 3.384	816	1.07

Name	Formula	Obs RI	Lib. RI	R.T. (s)	Similarity	PPM
9-Ethyl-10-methylanthracene	C ₁₇ H ₁₆	2207		1296, 3.448	769	0.6
11H-Benzo[b]fluorene	C ₁₇ H ₁₂	2226		1305, 3.696	860	-0.39
1-Methyl-4-p-tolylnaphthalene	C ₁₈ H ₁₆	2232		1308, 3.368	748	0.67
9-Ethyl-10-methylanthracene	C ₁₇ H ₁₆	2239		1311, 3.504	760	0.96
Retene	C ₁₈ H ₁₈	2252	2221 ± 28(3)	1317, 3.272	790	1.05
1-Methylpyrene	C ₁₇ H ₁₂	2252	2215 ± 3(3)	1317, 3.744	911	-0.93
1,4-Dimethyl-2-phenyl-naphthalene	C ₁₈ H ₁₆	2277		1329, 3.280	717	0.98
4-Methylpyrene	C ₁₇ H ₁₂	2284		1332, 3.586	874	-0.11
Pyrene, 2-methyl-	C ₁₇ H ₁₂	2310		1344, 3.432	854	-0.15
1,3,6,8-Tetramethylanthracene	C ₁₈ H ₁₈	2348		1362, 2.792	705	0.47
Benzo[ghi]fluoranthene	C ₁₈ H ₁₀	2452		1404, 3.224	897	0.44
Benzo[ghi]fluoranthene	C ₁₈ H ₁₀	2513		1425, 3.216	819	0.95
Benzo[c]phenanthrene	C ₁₈ H ₁₂	2522		1428, 3.130	889	0.66
1,2-Dihydrobenzo[b]fluoranthene	C ₂₀ H ₁₄	2557		1440, 2.848	719	0.32
2-Methylchrysene	C ₁₉ H ₁₄	2650		1470, 2.992	882	0.37
1-Methylchrysene	C ₁₉ H ₁₄	2660		1473, 3.072	849	0.38
Benz[a]anthracene, 7-methyl-	C ₁₉ H ₁₄	2670		1476, 3.144	733	0.92
7-Methylbenz[a]anthracene	C ₁₉ H ₁₄	2690		1482, 3.256	797	0.55
Phenanthrene, 2-phenyl-	C ₂₀ H ₁₄	2720		1491, 3.336	768	0.93
Pyrene, 1-phenyl-	C ₂₂ H ₁₄	2983		1581, 1.984	738	0.22
Indeno[1,2,3-cd]fluoranthene	C ₂₂ H ₁₂	3344		1770, 3.691	743	0.63

Similarity Ave. 818/1000 Ave. |PPM| 0.66

Figure 6. Peak True and library El mass spectra for phenanthrene (Left) & pyrene (Right).

Table 4. TD-El Sample 1, Hetero-Polyaromatic Hydrocarbons

Name	Formula	Obs. RI	Lib. RI	R.T. (s)	Similarity	PPM	Name	Formula	Obs. RI	Lib. RI R.T. (s)	Similarity	PPM
Isoquinoline	C ₉ H ₇ N	1280	1261 ± 5(8)	687, 3.392	868	0.78	Cyclopenta(def)phenanthrenone	C ₁₅ H ₈ O	2086.5	1230, 3.960	916	0.89
Isoquinoline, 1-methyl-	$C_{10}H_9N$	1360	1345 ± 0(1)	753, 3.088	837	0.58	Naphtho[1,2-c]furan-1,3-dione	$C_{12}H_6O_3$	2091.9	1233, 1.328	796	1.11
Quinoline, 2,6-dimethyl-	$C_{11}H_{11}N$	1437.5	1412 ± 1(3)	813, 3.128	803	1.18	9-Phenanthrenol	C ₁₄ H ₁₀ O	2108.1	2124 ± 0(1) 1242, 4.184	728	1.45
Quinoline, 2,4-dimethyl-	$C_{11}H_{11}N$	1462.5	1454 ± 1(7)	831, 3.104	840	0.81	9,10-Anthracenedione, 2-methyl-	$C_{15}H_{10}O_2$	2140.5	2146 ± 0(1) 1260, 3.832	844	0.82
1-Naphthalenamine, N-methyl-	$C_{11}H_{11}N$	1475		840, 3.005	725	1.08	Benzo[b]naphtho[2,3-d]furan	C ₁₆ H ₁₀ O	2156.8	1269, 3.656	892	0.71
6-Quinolinamine, 2-methyl-	$C_{10}H_{10}N_2$	1504.2		861, 3.280	816	0.36	Phenanthrene-9-carboxaldehyde	C ₁₅ H ₁₀ O	2162.2	1272, 4.024	868	0.45
Dibenzofuran	C ₁₂ H ₈ O	1537.5	1515 ± 10(27)	885, 3.272	732	0.95	Phenanthrene-9-carboxaldehyde	C ₁₅ H ₁₀ O	2167.6	1275, 4.088	816	0.21
2-Naphthalenol	C ₁₀ H ₈ O	1541.7	1521 ± 3(13)	888, 3.552	779	0.93	Benzo[b]naphtho[2,3-d]furan	C ₁₆ H ₁₀ O	2178.4	1281, 3.752	859	0.71
1(2H)-Acenaphthylenone	C ₁₂ H ₈ O	1686.4		987, 3.782	793	-0.09	Benzo[kl]xanthene	C ₁₆ H ₁₀ O	2189.2	1287, 3.744	836	1.48
9H-Fluoren-9-one	C ₁₃ H ₈ O	1768.2	1749 ± 3(4)	1041, 3.560	906	0.59	4-Phenyl-2-naphthol	C ₁₆ H ₁₂ O	2232.3	2187 ± 0(1) 1308, 3.947	783	0.32
Anthrone	C ₁₄ H ₁₀ O	1855		1095, 3.544	727	0.95	2H-Phenanthro[9,10-b]pyran	C ₁₇ H ₁₂ O	2238.7	1311, 3.872	701	0.9
2,3-Naphthalenedicarboxaldehyde	$C_{12}H_8O_2$	1860	1859 ± 0(1)	1098, 4.071	713	-0.29	9,10-Anthracenedione, 2,3-dimethyl-	$C_{16}H_{12}O_2$	2290.3	1335, 3.424	837	1.24
Naphtho[1,2-c]furan-1,3-dione	$C_{12}H_6O_3$	1870		1104, 3.928	838	0.94	11H-Benzo[a]fluoren-11-one	C ₁₇ H ₁₀ O	2400	1386, 3.224	895	1.08
Anthrone	C ₁₄ H ₁₀ O	1890		1116, 3.584	838	1.09	Phenanthro(2,1-b)thiophene	$C_{16}H_{10}S$	2434.8	1398, 3.216	797	1.2
Xanthone	$C_{13}H_8O_2$	1895	1855 ± 11(2)	1119, 3.736	756	1.48	1-(10-Methylanthracen-9-yl)ethanone	C ₁₇ H ₁₄ O	2443.5	1401, 3.108	732	0.72
1-Phenanthrenol	C ₁₄ H ₁₀ O	1905		1125, 3.552	837	0.81	11H-Benzo[a]fluoren-11-one	C ₁₇ H ₁₀ O	2443.5	1401, 3.240	765	0.93
Benzo[h]isoquinoline	$C_{13}H_9N$	1905		1125, 3.784	835	0.77	11H-Benzo[a]fluoren-11-one	C ₁₇ H ₁₀ O	2469.6	1410, 3.232	809	1.15
Anthrone	C ₁₄ H ₁₀ O	1920		1134, 3.660	826	1.19	1-Phenyldibenzofuran	C ₁₈ H ₁₂ O	2530.4	1431, 2.968	804	1.69
Naphtho[1,2-c]furan-1,3-dione	$C_{12}H_6O_3$	1965		1161, 3.968	776	1.21	7H-Benz[de]anthracen-7-one	C ₁₇ H ₁₀ O	2565.2	2525 ± 0(1) 1443, 3.184	911	1.16
4-Hydroxy-9-fluorenone	$C_{13}H_8O_2$	1985		1173, 3.933	873	1.04	Naphtho[2,1,8,7-klmn]xanthene	C ₁₈ H ₁₀ O	2591.3	1452, 2.944	727	1.83
Anthracene, 9-methoxy-	C ₁₅ H ₁₂ O	1995		1179, 3.464	751	1.18	Benzo(c)carbazole	$C_{16}H_{11}N$	2600	1455, 3.192	793	0.33
Anthrone	C ₁₄ H ₁₀ O	2000		1182, 3.920	802	0.71	1-Phenyldibenzofuran	C ₁₈ H ₁₂ O	2620	1461, 2.920	744	0.93
3,7-Dimethyldibenzothiophene	C ₁₄ H ₁₂ S	2005.4		1185, 3.416	768	0.01	6H-Benz[de]anthracen-6-one	C ₁₇ H ₁₀ O	2650	1470, 3.360	807	1.3
9,10-Phenanthrenedione	$C_{14}H_8O_2$	2005.4	2050 ± 61(2)	1185, 3.952	867	0.54	6H-Benz[de]anthracen-6-one	C ₁₇ H ₁₀ O	2670	1476, 3.448	776	0.81
4-Hydroxy-9-fluorenone	C13H8O2	2043.2		1206, 4.184	808	0.75	1-Phenyldibenzofuran	C ₁₈ H ₁₂ O	2700	1485, 3.448	737	0.49
Phenanthrene, 9-methoxy-	C ₁₅ H ₁₂ O	2048.6		1209, 3.552	699	0.65	1-Pyrenemethanol, α-phenyl-	C ₂₃ H ₁₆ O	2933.3	1563, 1.688	719	0.22
3,7-Dimethyldibenzothiophene	C ₁₄ H ₁₂ S	2054.1		1212, 3.522	715	-0.16		~ .				
	CasH ₂ O ₂	2081.1		1227, 1.440	819	0.82		SI	mila	rity Ave. 87'	1/100	U

Data Processing Auto Select

Figure 9. Targeting Pyrolytic Markers: TAF method) using 1st and 2nd dimension time windows (A) with HRAM ions (B). Markers in Sample 2 (C).

- HRT and MMS technology are powerful tools for the analysis of complex samples.
- The highly ordered, comprehensive contour plots can be used to screen for pollutants in air samples.

Figure 7. Peak True and library El mass spectra for cyclopenta(def)phenanthrenone (Left) and benzo[f]isoquinoline (Right).

Sample 2, Pyrolysis (Pyr, El): Targeting Pyrolytic Markers

Figure 8. Contour plot displaying pyrolytic markers in Sample 2 after pyrolysis-GCxGC-EI-TOFMS.

able Target Analyte	e Finding							Г	Input Ma	sses For Target Analyt	e Finding				
Enable E-TAF: Me	erge <mark>HRD®</mark> po	eak data with ma	tching Target Ar	nalyte peaks	i j				Analyte:	a-Methylstyrene					
h window size (poir	nts): Auto	~							#	Formula 1	sotope	M/Z	Tolerance	Units	Required
WHH (seconds).	0				Inter	ration Baseli	ne: Auto-C	alculated	2*	С9Но	17.07043		2.00	PPM	
Will (Seconds).					Incog	radion basen	ne. nuco e	Culculated	3			103.054	78 3.00	PPM	
	۵	Target	t Marke	ore					Name		R.T	. (s)	Area, Urba	n A	Area, Urb
	A	Target	t Marke	ers					<i>Name</i> Styrene		R.T 336,	: (s) 2.560	Area, Urba 1208956	n A 3	Area, Urb 123758
	A		t Marke	ers					Name Styrene α-Methy	styrene	R.T 336, 426,	2.560 2.432	Area, Urba 1208956 2233858	n A 3	Area, Urb 123758 98585
es to Find:	A)	■ Target	t Marke	ers					Name Styrene α-Methy 1,10-Und	styrene lecadiene	R.T 336, 426, 522,	2.560 2.432 2.032	Area, Urba 12089563 2233858 132298	n A 3	Area, Urb 123758 98585 29481
s to Find: Analyte	A) Formula (Mo	GCxGC	Start Time	Prs	Start 2nd Ei	nd 2nd I Mi	n Area Mir	Advanced	Name Styrene α-Methy 1,10-Und 1-Undec	lstyrene lecadiene ene	R.T 336, 426, 522, 528,	(s) 2.560 2.432 2.032 1.992	Area, Urba 1208956 2233858 132298 713542	n A 3	Area, Urb 123758 98585 29481 95507
s to Find: Analyte Styrene	A)	GCxGC	Start Time Er	ers	Start 2nd Ei 2.377 s	nd 2nd I Mi 2.649 s	n Area Mir 100 25	Advanced	Name Styrene α-Methy 1,10-Und 1-Undec Undecan	lstyrene lecadiene ene e	R.T 336, 426, 522, 528, 537,	. (s) 2.560 2.432 2.032 1.992 1.944	Area, Urba 12089563 2233858 132298 713542 412998	n A 3	Area, Urb 123758 98585 29481 95507 33503
s to Find: Analyte Styrene a-Methylstyrene 1,10-Undecadien	A) Formula Mc 	GCxGC GCxGC st Toler Units 3.00 PPM 3.00 PPM	Start Time Er 330 s 420 s 516 s	ers and Time 336 s 426 s 522 s	Start 2nd Ei 2.377 s 2.304 s 1.924 s	nd 2nd I Mi 2.649 s 2.512 s 2.116 s	n Area Mii 100 25 100 25 100 25	Advanced Add	Name Styrene α-Methy 1,10-Und 1-Undecan Vinyl ber	lstyrene lecadiene ene e zoate	R.T 336, 426, 522, 528, 537, 573,	(s) 2.560 2.432 2.032 1.992 1.944 2.816	Area, Urba 1208956 2233858 132298 713542 412998 455352	n A 3	Area, Urb 123758 98585 29481 95507 33503 53614
s to Find: Analyte Styrene o-Methylstyrene 1,10-Undecadien 1-Undecene	A)	GCxGC CCxGC St Toler Units 3.00 PPM 3.00 PPM 3.00 PPM	Start Time Er 330 s 420 s 516 s 523 s 567 s	ers ad Time (1) 336 s 426 s 522 s 528 s 573 c	Start 2nd Ei 2.377 s 2.304 s 1.924 s 1.880 s 2.712 c	nd 2nd I Mi 2.649 s 2.512 s 2.116 s 2.072 s 2.904 c	n Area Mir 100 25 100 25 100 25 100 25	Advanced Add Remove	Name Styrene α-Methy 1,10-Und 1-Undec Undecan Vinyl ber Caprolac	lstyrene lecadiene ene e zoate tam	R.T 336, 426, 522, 528, 537, 573, 681.	(s) 2.560 2.432 2.032 1.992 1.944 2.816 3.784	Area, Urba 12089563 2233858 132298 713542 412998 455352 1365928	n A 3	Area, Urb 123758 98585 29481 95507 33503 53614 15789
s to Find: Analyte Styrene a-Methylstyrene 1,10-Undecadien 1-Undecene Vinyl benzoate Caprolactam	A)	Carge GCxGC t Toler Units 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM	Start Time Er 330 s 420 s 516 s 523 s 567 s 675 s	ers ad Time 336 s 426 s 522 s 528 s 528 s 573 s 681 s	Start 2nd Ei 2.377 s 2.304 s 1.924 s 1.880 s 2.712 s 3.648 s	nd 2nd I Mi 2.649 s 2.512 s 2.116 s 2.072 s 2.904 s 3.920 s	n Area Mii 100 25 100 25 100 25 100 25 100 25 100 25	Advanced Add Remove	Name Styrene α-Methy 1,10-Und 1-Undecan Undecan Vinyl ber Caprolac	lstyrene lecadiene ene e zoate tam	R.T 336, 426, 522, 528, 537, 573, 681, 783	(s) 2.560 2.432 2.032 1.992 1.944 2.816 3.784 3.104	Area, Urba 1208956 2233858 132298 713542 412998 455352 1365928	n A 3 5	Area, Urb 123758 98585 29481 95507 33503 53614 15789
s to Find: Analyte Styrene I-Methylstyrene I,10-Undecadien I-Undecene /inyl benzoate Caprolactam Diphenyl Stoluone iscourse	A)	Carges Carges	Start Time Er 330 s 420 s 516 s 523 s 567 s 675 s 777 s	ers ad Time 336 s 426 s 522 s 528 s 573 s 681 s 783 s 920 s	Start 2nd Ei 2.377 s 2.304 s 1.924 s 1.880 s 2.712 s 3.648 s 3.020 s	nd 2nd I Mi 2.649 s 2.512 s 2.116 s 2.072 s 2.904 s 3.920 s 3.212 s	n Area Mir 100 25 100 25 100 25 100 25 100 25 100 25 100 25 100 25	Advanced Add Remove Import	Name Styrene α-Methy 1,10-Und 1-Undecan Undecan Vinyl ber Caprolac Diphenyl	lstyrene lecadiene ene e zoate tam	R.T 336, 426, 522, 528, 537, 573, 681, 783, 027	(s) 2.560 2.432 2.032 1.992 1.944 2.816 3.784 3.104	Area, Urba 12089563 2233858 132298 713542 412998 455352 1365928 1067612	n A 3 3	Area, Urb 123758 98585 29481 95507 33503 53614 15789 176620
s to Find: Analyte Styrene I-Methylstyrene I,10-Undecadien I-Undecene /inyl benzoate Caprolactam Diphenyl D-Toluene isocya Styrene Dimer	A)	Target GCxGC st Toler J.00 PPM J.00 PPM J.00 PPM J.00 PPM J.00 PPM J.00 PPM J.00 PPM J.00 PPM J.00 PPM J.00 PPM J.00 PPM J.00 PPM J.00 PPM J.00 PPM J.00 PPM	Start Time Er 330 s 420 s 516 s 523 s 567 s 675 s 777 s 927 s 1095 s 1095 s	ers ad Time 9 336 s 426 s 522 s 528 s 573 s 681 s 783 s 929 s 1101 s	Start 2nd Ei 2.377 s 2.304 s 1.924 s 1.880 s 2.712 s 3.648 s 3.020 s 3.855 s 2.368 s	nd 2nd I Mi 2.649 s 2.512 s 2.116 s 2.072 s 2.904 s 3.920 s 3.212 s 4.150 s 2.528 s	n Area Mil 100 25 100 25 100 25 100 25 100 25 100 25 100 25 100 25 100 25	Advanced Add Remove Import Export	Name Styrene α-Methy 1,10-Und 1-Undecan Undecan Vinyl ber Caprolac Diphenyl o-Toluer	lstyrene lecadiene ene zoate tam e isocyanate	R.T 336, 426, 522, 528, 537, 573, 681, 783, 927,	(s) 2.560 2.432 2.032 1.992 1.944 2.816 3.784 3.104 4.136	Area, Urba 12089563 2233858 132298 713542 412998 455352 1365928 1067612 7767	n A 3 5	Area, Urb 123758 98585 29481 95507 33503 53614 15789 176620 1004
s to Find: Analyte Styrene a-Methylstyrene 1,10-Undecadien 1-Undecene Vinyl benzoate Caprolactam Diphenyl o-Toluene isocya Styrene Dimer 1,2-Ethanediol, (A)	Target GCxGC st Toler Units 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM	Start Time EI 330 s 420 s 516 s 523 s 567 s 675 s 777 s 927 s 1095 s 1278 s 1278 s	ers and Time 336 s 426 s 522 s 528 s 573 s 681 s 783 s 929 s 1101 s 1284 s	Start 2nd Ei 2.377 s 2.304 s 1.924 s 1.880 s 2.712 s 3.648 s 3.020 s 3.855 s 2.368 s 3.472 s	nd 2nd I Mi 2.649 s 2.512 s 2.116 s 2.072 s 2.904 s 3.920 s 3.212 s 4.150 s 2.528 s 3.712 s	n Area Mi 100 25 100 25	Advanced Add Remove Import Export Library	Name Styrene α-Methy 1,10-Und 1-Undecan Undecan Vinyl ber Caprolac Diphenyl o-Toluer Styrene I	lstyrene lecadiene ene zoate tam e isocyanate Dimer	R.T 336, 426, 522, 528, 537, 573, 681, 783, 927, 1101,	(s) 2.560 2.432 2.032 1.992 1.944 2.816 3.784 3.104 4.136 2.440	Area, Urba 12089563 2233858 132298 713542 412998 455352 1365928 1067612 7767 34938	n A 3 5	Area, Urb 123758 98585 29481 95507 33503 53614 15789 176620 1004 64230
es to Find: Analyte Styrene G-Methylstyrene 1,10-Undecadien 1-Undecene Vinyl benzoate Caprolactam Diphenyl o-Toluene isocya Styrene Dimer 1,2-Ethanediol, « Styrene Trimer Undecane	A)	Target GCxGC st Toler Units 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM 3.00 PPM	Start Time Et 330 s 330 s 420 s 516 s 523 s 567 s 675 s 777 s 927 s 1095 s 1278 s 1413 s 531 s 531 s	ers ad Time 3 336 s 426 s 522 s 528 s 573 s 681 s 783 s 929 s 1101 s 1284 s 1419 s 537 s	Start 2nd Er 2.377 s 2.304 s 1.924 s 1.880 s 2.712 s 3.648 s 3.020 s 3.855 s 2.368 s 3.472 s 2.552 s 1.840 s	nd 2nd I Mi 2.649 s 2.512 s 2.116 s 2.072 s 2.904 s 3.920 s 3.212 s 4.150 s 2.528 s 3.712 s 2.728 s 2.728 s	n Area Mii 100 25 100 25	Advanced Add Remove Import Export Library	Name Styrene α-Methy 1,10-Und 1-Undecan Vinyl ber Caprolac Diphenyl o-Toluer Styrene I 1,2-Etha	lstyrene lecadiene ene zoate tam e isocyanate Dimer nediol, dibenzoat	R.T 336, 426, 522, 528, 537, 573, 681, 783, 927, 1101, 1284,	. (s) 2.560 2.432 2.032 1.992 1.944 2.816 3.784 3.104 4.136 2.440 3.552	Area, Urba 12089563 2233858 132298 713542 412998 455352 1365928 1067612 7767 34938 266467	n A 3 3	Area, Urb 123758 98585 29481 95507 33503 53614 15789 176620 1004 64230 29118

Summary

 Retrospective analysis using TAF facilitates quick identification of markers in the comprehensive data.