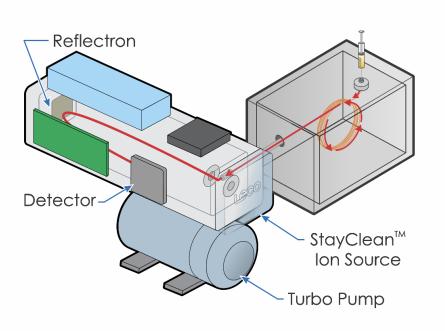
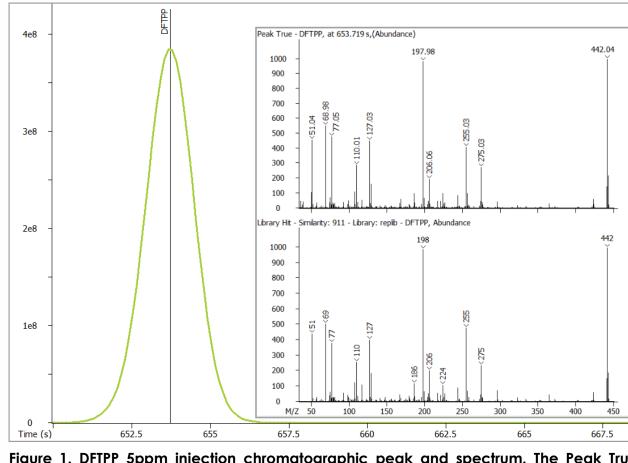
Surpassing Detection Limits for 200 Organic Compounds in Water Using EPA Method 525.2 via GC-MS

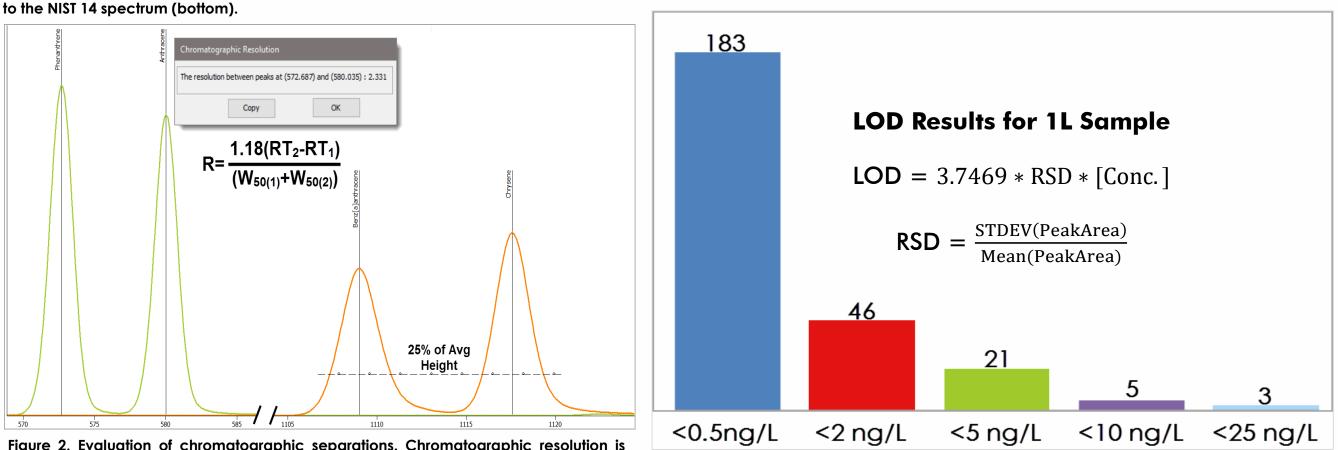

Introduction

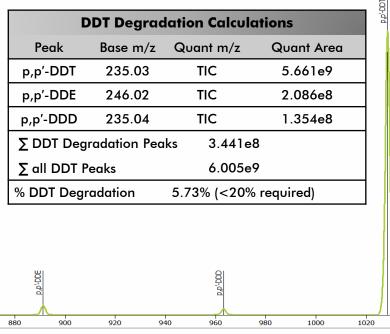
The United States Environmental Protection Agency (US EPA) Method 525.2 can be applied for the determination of organic compounds in drinking water, or water in any phase of the drinking water process from source to tap, by liquid-solid extraction and gas chromatography/mass spectrometry.

In this study, EPA Method 525.2 was applied to determine the detection limit of more than 200 organic compounds, namely pesticides and polyaromatic hydrocarbons, in water using gas chromatography with LECO's new benchtop time-of-flight mass spectrometer (GC-MS).

Pegasus[®] BT GC-TOFMS Design


- SIM-like Sensitivity with Full Mass Range Spectral Data
- Comprehensive Data for Retrospective Analysis
- Targeted and Untargeted Peak Find Options
- StayClean[™] Source Minimizes System Downtime
- Fully Integrated Next Generation ChromatOF with patented NonTarget Deconvolution[™] (NTD[®])




Method Conditions

MS Method Conditions Pegasus BT-TOFMS					
Transfer Line Temperature	320 °C				
El Source Tempero	iture 280 °C				
Acquisition Rate	8 spectra/sec				
Mass Range	35 – 645 m/z				
Gas Chromato	graph & Autosampler Agilent 7890B GC & LECO L-PAL3 ATX				
Injection	1 uL Pulsed Splitless, 20 psi for 1.1min; GC injector 40 °C for 0.1 min, 720 °C/min to 280 °C for 5 min				
Column	Rxi-5MS 30 m x 0.25 mm x 0.25 μm				
Temp. Program	1.0 m at 40 °C, ramp 60 °C/min to 160 °C, ramp 6 °C/min to 320 °C, hold 2.0 min				

D	DT Degi
Peak	Base m,
p,p'-DDT	235.03
p,p'-DDE	246.02
p,p'-DDD	235.04
∑ DDT Degr	adation l
∑ all DDT Pe	eaks
% DDT Degro	adation

Todd Richards, Lorne E. Fell, Joseph E. Binkley | LECO Corporation

Tuning and System Checks

spectrum (top) is comprised of data automatically deconvoluted from any coeluting signals by ChromaTOF[®]. The Peak True Similarity Score of 911 demonstrates high fidelity

Figure 2. Evaluation of chromatographic separations. Chromatographic resolution is easily calculated within ChromaTOF. R values greater than 1.5 are regarded as being baseline resolved. A constant value trace can be plotted on the chromatogram to easily highlight the valley criteria of Benz[a]anthracene and Chrysene.

Fig 2. Evaluation of p,p'-DDT degradation. Method 525.2 requires less than 20% of DDT degrade into p,p'-DDE and p,p'-DDD based on each peak's TIC area.

DFTPP Tune Criteria						
m/z	Relative Abundance Criteria	Pegasus BT Values	Pass / Fail			
51	10-80% of Base Peak	45.9% of Base Peak	Pass			
68	<2% of m/z 69	1.45% of m/z 69	Pass			
70	<2% of m/z 69	0.72% of m/z 69	Pass			
127	10-80% of Base Peak	45.3% of Base Peak	Pass			
197	<2% of m/z 198	0.31% of m/z 198	Pass			
198	Base Peak or >50% of m/z 442	98.3% of m/z 442	Pass			
199	5-9% of m/z 198	7.0 % of m/z 198	Pass			
275	10-60% of Base Peak	27.4 % of Base Peak	Pass			
365	>1% of Base Peak	2.8% of Base Peak	Pass			
441	Present & < m/z 443	66.2% of m/z 443	Pass			
442	Base Peak or >50% of m/z 198	Base Peak	Pass			
443	15-24% of m/z 442	21.9 % of m/z 442	Pass			

Figure 1. DFTPP 5ppm injection chromatographic peak and spectrum. The Peak True Table 1. DFTPP 5 ppm injection Peak True spectrum evaluation against Method 525.2's tuning criteria. All evaluation criteria were well within the method's expected ranges.

> Figure 3. Number of target compounds at different Limits of Detection (LOD). Calculations based of fortified water standards at 1, 2, 5, 10, 20 & 50 ppb. RSD values calculated using 5 replicates per level. EPA 525.2 lists demonstrated MDLs of ~25 to ~2400 ng/L (most compounds 100-500 ng/L).

Selected Target Analytes in 1L River Water Sample							
Name	Peak S/N	Conc. (ng/L)					
2,4-Dimethylphenol	113	35.7					
Diethyl Phthalate	1265	8.7					
Atrazine	164	11.6					
Anthraquinone	81	2.0					
Aldrin	113	6.0					
Metolachlor	82	4.4					
Fluoranthene	280	2.1					
Pyrene	262	1.9					
Chrysene	41	1.3					
Benzo[b]fluoranthene	138	1.1					

Untargeted Peak Identification

River Water Sample – Downstream from Treatment Plant						
Name	Likely Source	Similarity	Peak S/N			
Dihydroactinidiolide	Fragrance (tea scent)	853	838			
Diethyltoluamide (DEET)	Insect Repellant	867	573			
2,6-Dibromohydroquinone	Flame Retardant	830	271			
Tri(β,β'-dichloroisopropyl)phosphate	Flame Retardant	756	97			
Dehydroabietic acid	Pulp Resin	902	2154			

Table 3. Examples of compounds found in a river water sample through ChromaTOF's NTD peak finding algorithms An example of the deconvolution of DEET is shown below.

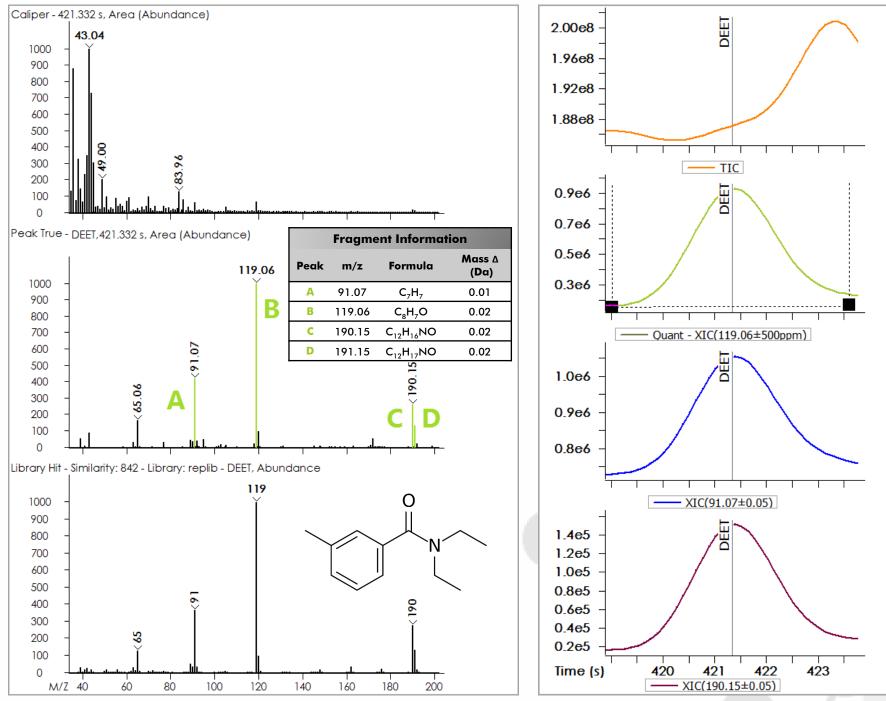


Figure 4. Selected mass traces and fragment calculations of the DEET signal found in a river water sample. Despite its relatively low abundance, ChromaTOF was able to find and deconvolve the related peak information. The top two spectra show the TIC spectra and deconvolved Peak True spectra at the DEET peak's elution time. The library spectra (bottom) is shown for reference. Fragment ions and formulas calculated within ChromaTOF may be used to help confirm the presumptive library match.

Conclusions

The Pegasus BT's ability to collect full mass range spectral data with SIM level sensitivity allows for monitoring EPA Method 525.2 targets while also providing the ability to effectively detect new and emerging non-targeted contaminants at these same low limits of detection. NonTarget Deconvolution results combined with library and formula searches can lead to accurate identification of untargeted analytes.

Additionally, because you collect the entire mass range, you do not need to store and rerun the sample in order to evaluate historical contaminant trends.