Novel Residue Analysis of Various Food Samples using GCand GC×GC-HRMS with Encoded Frequent Pulsing™

Scott Pugh; Viatcheslav Artaev; Jonathan Byer | LECO Corporation, St. Joseph, MI, USA

Introduction

Environmental contaminants are a diverse group of compounds that come with many challenges when it comes to detecting, properly identifying, and quantifying each of the various compound groups. Add in the complications due to sample matrix interference, and confidently identifying environmental contaminants within a sample matrix can be a formidable task. By combining the separation power of comprehensive two-dimensional gas chromatography with a high resolution Folded Flight Path® (FFP®) TOFMS that uses Encoded Frequent Pulsing (EFP™) technology, the ability to analyze samples with a full mass range resolving power greater than 25,000, sub-ppm mass accuracies, acquisition rates up to 200 spectra per second, and sub-picogram limits of detection is possible.

The addition of EFP technology with specialized real-time decoding algorithms provides the ability to increase the extraction frequency of the instrument, thus increasing the duty-cycle without sacrificing spectral performance. To evaluate the performance of this new technology, a typical set of performance standards was first tested with and without EFP enabled to develop a baseline for sensitivity testing using prototype instrumentation. Then a complex mix of environmental standards was tested to evaluate the sensitivity of the instrument with regard to various compound types. This was then followed by the analysis of a set of pesticide residue standards in

Figure 3. Zoomed in chromatographic plots of a-BHC and Tefluthrine with their respective spectral plots below.

The instrument shows very good linearity for the calibration levels tested. Table 1 displays the calibration table along with their associated LOD and the coefficient of determination values (R²) associated with their individual calibration curves.

matrix to test 'real-world' performance using comprehensive two-dimensional gas chromatography coupled with a high resolution multi-reflecting TOFMS prototype with EFP.

Challenges

The Pegasus® GC-HRT is a High Resolution Multi-Reflecting TOFMS. This technology achieves a full mass range resolving power >25,000, with sub-ppm mass accuracies, acquisition rates up to 200 spectra/sec, and excellent isotope ratio fidelity. This is made possible because of a long flight path (20 m), a long flight time (1 ms), and thus a low duty-cycle. This design also uses an orthogonal pulser without a trap, which means that there will be ions that are lost during the interval between pulses which may affect its sensitivity.

EFP is a novel multiplexing approach which allows for an increase in sensitivity by increasing the pulser frequency without overlapping m/z peaks in the resulted mass spectra. The feature that separates this approach to multiplexing from other approaches is the use of unequal pulse intervals. It's this unequal pulse interval that prevents the possible loss in sensitivity due to overlapping m/z peaks in the analyzer.¹

Experiments

A set of eight injections of 1 pg/µL of OFN were collected without the use of EFP. This resulted in an IDL calculation of 0.12 pg/µL. Then another set of eight injections of 0.10 pg/µL OFN were collected using EFP which gave an IDL calculation of 0.04 pg/µL. This was then followed by another eight injections of 0.05 pg/µL OFN which gave an IDL calculation of 0.02 pg/µL. Figure 1 shows overlapped chromatographic plots of m/z 271.9867 ± 5 mDa for each of the individual sets of experiments demonstrating the response for each of the sets of data.

Table 1. Pesticide Calibration Table ranging from 0.5 ppb to 20 ppb

		Quant Mass	LOD			Quant Mass	;	LOD			Quant Mass		LOD
Name	R.T. (s)	(± 5 ppm)	R ² (ppb)	Name	R.T. (s)	(± 5 ppm)	R ²	(ppb)	Name	R.T. (s)	(± 5 ppm)	R ²	(ppb)
Dichlobenil	273.1	170.9637	0.99948 0.075	Anthraquinone	572.0	208.0518	0.99694	0.197	Carfentrazone ethyl	793.3	330.0251	0.99806	1.000
Mevinphos	295.1	192.0182	0.99952 0.083	Aldrin	573.4	262.8564	0.99678	1.200	Endosulfan sulfate	795.3	271.8096	0.99568	0.536
Pebulate	306.9	128.1069	0.99820 0.052	Metolachlor	575.8	238.0993	0.99686	0.136	Lenacil	796.0	136.0393	0.99556	0.136
Etridiazole	307.3	182.9181	0.99814 0.052	Fenthion	578.6	278.0194	0.99776	0.130	DDT(p,p')	801.5	235.0075	0.99856	0.333
2,4-Dimethylphenyl formamide	315.4	149.0835	0.99822 0.079	Chlorpyrifos	581.6	196.9196	0.99798	0.091	Tebuconazole	818.4	125.0152	0.99656	0.375
Pentachlorobenzene	336.6	249.8486	0.99886 0.054	Parathion ethyl	582.4	125.0293	0.99818	0.333	Propargite	825.0	135.0804	0.99485	0.500
Tecnazene	336.8	214.8797	0.99780 0.136	Dicofol	584.3	110.9996	0.99852	0.375	Piperonyl butoxide	830.1	176.0831	0.99682	0.167
Diphenylamine	376.0	169.0886	0.99800 0.200	Triadimefon	585.5	208.0285	0.99513	0.600	Resmethrin	832.3	123.1168	0.99435	0.667
Chlorpropham	387.4	213.0551	0.99858 0.120	DCPA	587.8	300.8802	0.99726	0.130	Iprodione	844.9	314.0093	0.99932	0.625
Trifluralin	399.3	306.0696	0.99531 0.500	Diphenamid	603.8	72.0443	0.99842	0.058	Phosmet	849.1	160.0393	0.99409	0.250
Phorate	411.4	121.0412	0.99646 0.188	Cyprodinil	613.6	224.1182	0.99572	0.214	Bromopropylate	851.8	340.8994	0.99612	0.333
BHC alpha	417.9	180.9373	0.99612 0.214	Pendimethalin	621.8	119.0603	0.99634	1.071	Tetramethrin	854.4	123.1168	0.99806	0.200
Hexachlorobenzene	426.5	283.8096	0.99728 0.150	Heptachlor epoxide	622.5	352.8436	0.99686	0.429	Bifenthrin	854.8	165.0698	0.99523	0.115
Dicloran	429.1	205.9644	0.99830 0.682	Penconazole	623.3	158.9762	0.99475	0.600	Methoxychlor	856.8	227.1066	0.99572	0.200
Atrazine	438.8	215.0932	0.99864 0.300	Captan	631.4	149.0471	0.99549	4.286	Fenpropathrin	858.8	125.0960	0.99267	0.600
Clomazone	443.1	204.1019	0.99702 0.150	Fipronil	635.9	212.9480	0.99758	0.750	Tebufenpyrad	861.0	333.1602	0.99608	0.500
BHC beta	444.3	180.9373	0.99776 0.375	Allethrin	635.9	123.1168	0.99554	0.333	Phenothrin cis	868.5	123.1168	0.99333	1.071
Lindane	451.6	180.9373	0.99610 0.375	Quinalphos	636.4	146.0474	0.99578	0.300	Tetradifon	870.0	355.8808	0.99582	0.214
Terbuthylazine	454.4	214.0854	0.99734 0.375	Triadimenol	637.5	112.0505	0.99445	0.167	Phenothrin	872.3	168.0569	0.99738	0.333
Pentachloronitrobenzene	457.1	294.8337	0.99226 0.375	Folpet	638.9	259.9334	0.99525	2.813	Phosalone	876.6	182.0003	0.99467	0.375
Pronamid	458.3	172.9555	0.99634 0.300	Procymidone	644.3	283.0161	0.99786	0.250	Azinphos-methyl	876.6	160.0505	0.99036	0.800
Fonofos	459.9	109.0106	0.99904 0.167	Endosulfan I	667.6	159.9841	0.99920	0.500	Pyriproxyfen	880.4	136.0756	0.99754	0.107
Disulfoton	473.4	96.9509	0.99768 0.094	Chlordane (cis)	671.6	372.8254	0.99523	0.300	Cyhalothrin	884.6	181.0647	0.99734	0.321
Terbacil	474.5	160.0034	0.99850 0.375	Prothiofos	691.1	161.9633	0.99592	0.300	Cyhalothrin Isomer	892.4	181.0647	0.99932	0.900
Tefluthrine	479.5	177.0321	0.99884 0.088	Fludioxonil	697.5	248.0391	0.99449	0.300	Fenarimol	896.9	107.0239	0.99770	0.214
Chlorothalonil	481.9	265.8780	0.99902 0.150	DDE(p,p')	699.8	317.9345	0.99501	0.167	Permethrin (cis)	921.6	163.0075	0.99870	0.125
Triallate	483.6	268.0324	0.99838 0.054	Dieldrin	701.1	262.8564	0.99664	0.500	Permethrin (trans)	927.1	163.0075	0.99363	0.125
Pentachloroaniline	502.8	264.8595	0.99712 0.125	Myclobutanil	709.6	179.0622	0.99832	0.682	Pyridaben	927.5	147.1168	0.99564	0.231
Vinclozoline	522.0	284.9954	0.99906 0.300	Oxyfluorfen	713.8	302.0190	0.99680	0.938	Coumaphos	931.8	362.0139	0.99948	2.143
Chlorpyrifos methyl	522.5	287.9226	0.99856 0.068	Flusilazole	714.4	233.0592	0.99455	0.300	Prochloraz	934.6	70.0287	0.99578	2.500
Parathion methyl	522.5	263.0011	0.99726 0.115	Bupirimate	718.6	316.1563	0.99916	0.375	Cyfluthrin, total	958.3	163.0075	0.99235	2.500
Heptachlor	532.1	100.0074	0.99710 0.500	Endrin	728.4	262.8564	0.99828	1.500	Cypermethrin, total	969.9	163.0075	0.99814	2.000
Metalaxyl	537.6	206.1175	0.99856 0.214	Chlorfenapyr	734.6	59.0491	0.99766	0.115	Fluvalinate	1026.9	250.0604	0.99297	2.500
Pirimiphos methyl	557.5	305.0957	0.98595 0.094	Endosulfan II	740.1	236.8413	0.99746	1.250	Fenvalerate	1027.6	125.0152	0.99744	1.500
Linuron	559.5	159.9715	0.99618 0.563	DDD(p,p')	753.3	235.0075	0.99507	0.200	Deltamethrin	1048.9	181.0647	0.99890	1.250
Methyl pentachlorophenyl sulfide	561.5	295.8362	0.99800 0.250	Triazophos	777.0	161.0583	0.99610	0.600					

Comprehensive two-dimensional chromatography was then applied to the same sample set with slightly different methodology to show the benefits of separating out the sample matrix from the analytes of interest. Figure 4 shows the one-dimensional TIC plot of a 2.5 ppb standard in an eggplant matrix. Figure 5 shows a zoomed in plot highlighting a-BHC and Tefluthrine. In this example, the a-BHC is obstructed by a strong siloxane peak.

Time (s) 141 142 143 144 145 146 147 148 Time (s) 141 142 143 144 145 146 147 148 Time (s) 141 142 143 144 145 146 147 148

Figure 1. Overlapped chromatographic plots displaying m/z 271.98 ±5 mDa of 1 pg/µL OFN that is not using EFP and 0.10 pg/µL OFN and 0.05 pg/µl OFN both using EFP.

Sensitivity can be demonstrated with a typical performance standard, but the next step is to see how well EFP behaves with a set of environmental standards in matrix. A set of six calibration standards containing 107 pesticides in an eggplant matrix were prepared at concentrations ranging from 0.5 ppb to 20 ppb. Figure 2 shows a chromatographic plot displaying the TIC of the 10 ppb standard along with a chromatographic plot displaying the quant masses (AIC) for each of the analytes in the sample.

Figure 2. Chromatographic plot of a 10 ppb standard in an eggplant matrix displaying the TIC above and the AIC below.

T

Figure 6 shows a GCxGC contour plot displaying the TIC of the same 2.5 ppb eggplant standard. Figure 7 shows a zoomed in portion of the 2.5 ppb eggplant standard highlighting the separation of the a-BHC from the siloxane peak and the Tefluthrine from the sample matrix.

Figure 6. GCxGC contour plot displaying the TIC of a 2.5 ppb eggplant standard.

Figure 7. Zoomed in GCxGC contour plot highlighting the separation of analytes of interest from interfering peaks in a 2.5 ppb eggplant standard.

Conclusion

The use of a novel multiplexing approach called Encoded Frequent Pulsing has demonstrated the ability to increase the sensitivity of a High Resolution Multi-Reflecting TOFMS without compromising other aspects of its performance. This new approach has the potential to bring the benefits of a HR-TOFMS coupled with GC or GCxGC to applications that need extra sensitivity along with sub-ppm mass accuracies and a full mass range resolving power greater than 25,000 for better confidence in peak identification at present and in future retrospective analysis of complex samples.

The instrument is able to produce very good spectral quality at the required low concentrations. Figure 3 shows a couple examples of the spectral quality of a-BHC and Tefluthrine at 10 ppb in an eggplant matrix displaying their caliper spectrum, deconvoluted (Peak True) spectrum, and library match spectrum. The a-BHC has a similarity match of 894 and the Tefluthrine has a similarity match of 929.

Acknowledgements

We would like to thank Raymond Allum from the Florida Department of Agriculture and Consumer Services for providing sample extracts for our testing.

References

¹ASMS 2015 Proceedings, TOA am, P. Willis et al. High Resolution Multi-Reflecting TOFMS with Multiplexing by Encoded Frequent Pulsing for Increasing the Duty Cycle 10 to 100 Times.

Delivering the Right Results