A Novel Benchtop Time-of-Flight GC-MS System For High Throughput Qualitative And Quantitative Analysis of Drugs of Abuse in Human Urine

Introduction

Illicit drug use by teenagers and young adults continues to increase in the United States. Drug abuse is costly to our nation, exacting more than \$700 billion annually in costs related to crime, lost work productivity, and health care. At the same time, many forensic laboratories are experiencing increased workloads and reduced resources. There is an immediate need for high throughput methods resulting in conclusive identification of controlled substances such as opiates, barbiturates, and amines. In this study, preparation and analysis times were significantly reduced without sacrificing thorough characterization of samples.

Sample Preparation

Urine Extraction and Standard Addition

Urease (100 mg) was added to 2 mL of urine sample which was then incubated at 37°C for 15 minutes. The mixture was treated with 2 mL of 5M NaOH and extracted with 7 mL of CH_2CI_2 : 1) vortex for 1 minute, 2) centrifuge at 12,000 rpm for 5 minutes, and 3) separate the layers. The organic layer was dried with anhydrous CaCl₂ and drug standards were spiked into the solution at the following levels: 5, 10, 50, 100, 500, and 1000 ng/mL. The CH_2CI_2 was removed using N_2 (g) and the residue was reconstituted in $CHCI_3$.

Gas Chromatograph	Agilent 7890 with MPS2 Autosampler	
Injection	1µL, Split 20:1	
Carrier Gas	He @ 1.4 ml/min, Constant Flow	
Column	Rxi-5ms, 20 m x 0.18 mm i.d. x 0.18 µm (Restek, Bellefonte, PA, USA)	
Temperature Program	50°C (0.5 min), ramped 50°C/min to 320°C, held 5 min	
Mass Spectrometer	LECO Pegasus [®] BT	
Ion Source Temperature	250°C	
Ionization Mode	EI	
Mass Range (m/z)	35-650	
Acquisition Rate	20 spectra/s	

Instrument Parameters

MDE Meth

10,18 8,11

N-De

Amot

Meth

Pent

Caffe

Khai Pham¹, David E. Alonso², Christina Kelly² and Joe Binkley² | ¹Indiana University at South Bend, South Bend, IN; ²LECO Corporation, St. Joseph, MI

Table 1: Peak Table of Drug Abuse Compounds in Human Urine

Name	RT (s)	Formula	Peak S/N	Similarity
barbital	237.28	$C_{11}H_{18}N_2O_3$	22305	943
ohetamine	142.52	$C_9H_{13}N$	1371	963
renorphine	489.49	$C_{29}H_{41}NO_4$	834	898
albital	230.81	$C_{11}H_{16}N_2O_3$	3852	933
eine	323.82	$C_{18}H_{21}NO_{3}$	6212	935
tanyl	356.73	$C_{22}H_{28}N_2O$	376	804
rocodone	330.82	$C_{18}H_{21}NO_{3}$	2153	929
romorphone	332.66	$C_{17}H_{19}NO_3$	652	885
EA	218.06	$C_{12}H_{17}NO_2$	19917	916
eridine	244.10	$C_{15}H_{21}NO_{2}$	13085	933
nadone	294.56	C ₂₁ H ₂₇ NO	5333	917
namphetamine	153.35	$\bar{C}_{10}\bar{H}_{15}N$	28971	912
phine	329.50	$C_{17}H_{19}NO_{3}$	3186	855
AN	211.25	$C_{11}H_{15}NO_{2}$	282	894
codone	339.64	$C_{18}H_{21}NO_{4}$	1892	895
morphone	341.85	$C_{17}H_{19}NO_4$	498	807
tobarbital	241.17	$C_{11}H_{18}N_2O_3$	14092	949
nobarbital	271.80	$C_{12}H_{12}N_{2}O_{3}$	9466	910
ntermine	149.41	$C_{10}H_{15}N$	1882	922
obarbital	247.90	$C_{12}H_{18}N_2O_3$	11180	928
amfetamine	203.32	$C_{10}H_{13}NO_2$	6651	889
nadol	270.50	$C_{16}H_{25}NO_{2}$	14976	801

Name	R.T. (s)	Formula	Area	Similarity	Mass Delta (Da)
ethoxyamphetamine	203	C ₁₀ H ₁₅ NO	4141165	913	N/A
olo[1,2-a]pyrazine- lione, hexahydro-3- ethylpropyl)-	265	$C_{11}H_{18}N_2O_2$	19262066	827	N/A
8-Bisnorabieta- 13-triene	280	$C_{18}H_{26}$	32302999	840	0.00
esmethyl-cis- adol	274	$C_{15}H_{23}NO_{2}$	35880970	839	-0.01
nobarbital	272	$C_{12}H_{12}N_2O_3$	97649461	866	0
Ibital	231	$C_{11}H_{16}N_2O_3$	231882170	932	N/A
barbital	248	$C_{12}H_{18}N_2O_3$	248340909	941	-0.02
barbital	237	$C_{11}H_{18}N_2O_3$	387855631	960	-0.01
yl stearate	284	C ₁₉ H ₃₈ O ₂	437237841	947	-0.01
obarbital	241	$C_{11}H_{18}N_2O_3$	453729166	938	-0.02
eine	255	$C_8 H_{10} N_4 O_2$	1106666278	951	0.00

Table 3. Detection limits of Drug Abused Compounds in Human Urine and Government Cut-Off Levels^[1]

Compound names	Detection limits (ng/mL)	<i>Government cut-off level</i> (ng/mL)
Amobarbital	0.5	200
Phenobarbital	5	200
Butabarbital	1	200
Secobarbital	5	200
Pentobarbital	0.5	200
Amphetamine	10	500
Methamphetamine	10	500
MDEA	0.5	250
Tenamfetamine	50	250
MDMA	0.5	250
Phentermine	10	250
Buprenorphine	1	250
Hydrocodone	0.5	300
Methadone	10	300
Naltrexone	100	300
Tramadol	0.5	100
Codeine	50	2000
Hydromorphone	50	300
Morphine	120	2000
Oxycodone	15	100
Fentanyl	100	300
Meperidine	10	20
Naloxone	100	300
Oxymorphone	60	100

Data Acquisition and Processing

Data was processed using comprehensive NonTarget Deconvolution[™], with Peak True spectra compared to reference spectra registered in the NIST library. Target Analyte Finding was used to search for compounds of interest in urine samples and to generate calibration curves for drugs of abuse.

Conclusion

- High performance GC-TOFMS analysis facilitated drug identification through the acquisition of full range, non-skewed mass spectral data.
- Detection limits of non-derivatized drugs were well below the government cut-off levels.
- Runtime for barbiturates, opiates, and amines are under 10 minutes.
- Excellent calibration linearity with a concentration range from 5 ng/mL to 1000 ng/mL for opiates, barbiturates, and amines.
- Comprehensive data processing resulted in identification of heterocyclic compounds such as alkaloids including cotinine and nicotine, as well as narcotics, steroids, and pharmaceuticals in urine samples.

Reference

^[1]Pizzo, Pat. "INTERPERTATION OF DRUG TEST RESULTS." National Association of Drug Court Professionals. N.p., 2015. Web. 03 Aug. 2016.