Fingerprinting the Terpene Profiles of Various *Cannabis* Strains using GC and GCxGC with High Performance TOFMS

Introduction

- *Cannabis* is a complex mixture: terpenes, cannabinoids, flavonoids, etc.
- Medicinal uses include treatment of chronic pain, multiple sclerosis, epilepsy, anxiety, and cancer.
- Its total composition is important in determining potency and medical effectiveness (Entourage Effect).
- In this study, a novel analytical approach was utilized for the effective characterization of terpenes in different *cannabis* strains

Investigative Objectives

- Implement the use of enhanced, comprehensive twodimensional gas chromatography (GCxGC) for the separation of *cannabis* terpenes.
- Use a benchtop, high performance time-of-flight mass spectrometer and powerful processing software to quickly and confidently identify terpenes and other *cannabis* compounds.
- Use software tools to compare different *cannabis* strains.

Sample Preparation

- 1) Distillates from 23 *cannabis* strains and over 40 terpene standards were obtained from a collaborating test facility.
- 2) Samples were diluted in isopropanol and transferred to 2 mL GC vials for analysis.

Data Acquisition & Processing

LECO Pegasus[®] BT 4D

Table 1. Instrument acquisition parameters

Gas Chromatograph	Agilent 7890, LECO Dual Stage Quad Jet Modulator and L-PAL 3 Autosampler
Injection	0.5 μL, Split 250:1; 250 °C
Carrier Gas	He @ 1.4 ml/min, Constant Flow
Columns (1 st Dimension) (2 nd Dimension)	Rxi-5 MS, 30 m x 0.25 mm i.d. x 0.25 μm (Restek, Bellefonte, PA, USA) Rxi-17 Sil MS 0.6 m x 0.25 mm i.d. x 0.25 μm (Restek, Bellefonte, PA, USA
Temperature Program	40 °C (1 min), ramped 10 °C/min to 325 °C (2 min) Secondary oven maintained +5 °C relative to primary oven
Modulation	2s with temperature maintained +15 °C relative to secondary oven
Mass Spectrometer	LECO Pegasus BT 4D
Ion Source Temperature	250 °C
Ionization Mode	El
Mass Range (m/z)	45-600
Acquisition Rate	10 spectra/s (1D); 200 spectra/s (2D)

David E. Alonso¹, Julie Kowalski², and Joseph E. Binkley¹ | ¹LECO Corporation, St. Joseph, Michigan; ²Trace Analytics, Spokane, Washington

Terpene Standard Results: GC vs. GCxGC-TOFMS

G	C-TOFN	GCxGC-T	OFMS		
Name	Formula	R.T. (s)	Similarity	R.T. (s)	Similarity
Calamenene	$C_{15}H_{22}$	898.9	734	903 s, 1.145 s	901
Dendrasaline	C ₁₅ H ₂₂ O	936.9	485	933 s, 1.064 s	799
β-Calacorene	C ₁₅ H ₂₀	Not	Found	933 s, 1.219 s	857
Santalol, cis,α-	C ₁₅ H ₂₄ O	1013.6	551	1017 s, 1.281 s	797
Corymbolone	C ₁₅ H ₂₄ O ₂	1146.0	738	1149 s, 1.598 s	849
m-Camphorene	$C_{20}H_{32}$	1175.0	902	1179 s, 1.096 s	943
p-Camphorene	C20 32	1199.4	428	1199 s, 1.113 s	936

Figure 3. Terpene Contour plots (Fingerprints) for commercially available cannabis products: A) Indica dominant, B) Sativa dominant and C) 50:50 mixture.

Figure 2. GCxGC-TOFMS A) Peak True and B) library mass Spectra for β-calacorene. Not found in GC-TOFMS.

GCxGC-TOFMS *Cannabis* Analysis: Representative Compounds

Ave. 912/1000

Table 3. Representative list of compounds in *C. indica* with retention times and spectral similarity values

Name	Formula	R.T. (s)	Mass 🛆 (Da)	Similarity	Name	Formula	R.T. (s)	Mass ∆ (Da)	Similarity
Toluene	C ₇ H ₈	233 s, 0.811 s	-0.01	961	γ-Heptalactone	$C_7 H_{12} O_2$	591 s, 0.752 s	N/A	887
2-Butenal, 3-methyl-	C₅H ₈ O	237 s, 0.972 s	0.00	980	1H-Pyrazole, 1,3-dimethyl-	$C_5H_8N_2$	593 s, 1.192 s	-0.02	837
Octane	C ₈ H ₁₈	249 s, 0.665 s	-0.01	850	1-Hexyl butyrate	$C_{10}H_{20}O_2$	623 s, 0.942 s	N/A	867
Piperidine, 1-butyl-	$C_9H_{19}N$	253 s, 0.903 s	0.12	951	3-Methylacetophenone	$C_9H_{10}O$	623 s, 1.331 s	-0.01	948
2,4-Dimethyl-1-heptene	C ₉ H ₁₈	287 s, 0.702 s	-0.01	886	Crypton	$C_9H_{14}O$	625 s, 1.268 s	0.00	911
1-Octene, 4-methyl-	C ₉ H ₁₈	301 s, 0.693 s	N/A	948	Naphthalene	C ₁₀ H ₈	625 s, 1.345 s	-0.01	911
Octane, 4-methyl-	C ₉ H ₂₀	309 s, 0.690 s	-0.01	949	Dodecane	$C_{12}H_{26}$	631 s, 0.773 s	-0.01	883
Trans-3-methylpent-3-ene-5-ol	C ₆ H ₁₂ O	325 s, 0.569 s	0.00	992	Acetic acid, octyl ester	$C_{10}H_{20}O_2$	641 s, 0.943 s	N/A	963
2-Heptanone	C ₇ H ₁₄ O	335 s, 0.915 s	-0.01	977	Benzofuran, 7-methoxy-	C ₉ H ₈ O ₂	659 s, 1.100 s	0.03	859
Heptanal	C ₇ H ₁₄ O	345 s, 0.921 s	-0.01	926	Benzothiazole	C ₇ H₅NS	661 s, 1.572 s	-0.01	975
Ethanone, 1-(2-furanyl)-	$C_6H_6O_2$	359 s, 0.856 s	0.10	961	3-Isopropylbenzaldehyde	C ₁₀ H ₁₂ O	673 s, 1.260 s	0.00	883
2-Butenoic acid, 3-methyl-, ethyl ester	C ₇ H ₁₂ O ₂	369 s, 0.945 s	-0.01	970	Isopentyl hexanoate	$C_{11}H_{22}O_2$	675 s, 0.940 s	N/A	935
2(5H)-Furanone, 5,5-dimethyl-	C ₆ H ₈ O ₂	401 s, 1.353 s	-0.03	955	3-Ethyl-2-hexene	C ₈ H ₁₆	683 s, 1.721 s	-0.09	915
2-Methylthioacetic acid	C ₃ H ₆ O ₂ S	409 s, 1.259 s	0.02	963	1H-Pyrazole-4-carbonitrile	$C_4H_3N_3$	699 s, 0.605 s	0.03	980
5-Hepten-2-one, 6-methyl-	C ₈ H ₁₄ O	431 s, 0.994 s	-0.01	873	2,6-Heptanedione	$C_7H_{12}O_2$	781 s, 1.344 s	N/A	843
5-Norbornen-2-ol	C ₇ H ₁₀ O	433 s, 1.187 s	-0.01	944	Oxazole, 2-ethyl-4,5-dihydro-	C₅H ₉ NO	863 s, 0.976 s	0.00	943
Aniline	C ₆ H ₇ N	435 s, 0.954 s	0.01	916	Ethyl 4-ethoxybenzoate	$C_{11}H_{14}O_3$	897 s, 1.339 s	0.00	954
cis-2-(2-Pentenyl)furan	$C_9H_{12}O$	445 s, 0.930 s	0.00	802	Hexadecane	C ₁₆ H ₃₄	927 s, 0.814 s	N/A	788
Glutaranilic acid	$C_{11}H_{13}NO_{3}$	459 s, 0.796 s	-0.14	873	Furo[3,4-b]pyrazine-5,7-dione	$C_6H_2N_2O_3$	933 s, 0.607 s	0.09	812
1,4-Cyclohex-2-enedione	$C_6H_6O_2$	459 s, 1.707 s	-0.01	947	Butanal, 3-hydroxy-	$C_4H_8O_2$	1021 s, 0.897 s	N/A	940
N-Allyl-N,N-dimethylamine	$C_5H_{11}N$	489 s, 0.725 s	0.00	998	Heptadecane	C ₁₇ H ₃₆	1023 s, 0.819 s	N/A	806
Phenol, 4-(2-methylpropyl)-	C ₁₀ H ₁₄ O	507 s, 0.932 s	-0.01	835	Octadecane	C ₁₈ H ₃₈	1093 s, 0.838 s	N/A	864
1-Octanol	C ₈ H ₁₈ O	511 s, 0.925 s	N/A	863	(E)-2-Pentenenitrile	C₅H ₇ N	1201 s, 0.725 s	0.27	996
Pyrimidine, 4,6-dimethyl-	$C_6H_8N_2$	515 s, 1.186 s	-0.03	848	Pyrene	C ₁₆ H ₁₀	1255 s, 1.994 s	0.00	879
6-Methyl-3,5-heptadiene-2-one	C ₈ H ₁₂ O	547 s, 1.154 s	-0.01	951	Docosane	C ₂₂ H ₄₆	1313 s, 0.894 s	N/A	877
Limona ketone	C ₉ H ₁₄ O	573 s, 1.159 s	-0.01	901	Heptacosane	C ₂₇ H ₅₆	1549 s, 0.977 s	N/A	877
Isobutyl caproate	$C_{10}H_{20}O_{2}$	587 s, 0.909 s	N/A	952	2-Ethylisovaleraldehyde	C ₇ H ₁₄ O	1805 s, 1.522 s	N/A	966

Table 4. Representative list of terpenes in *C. indica* with retention times and spectral similarity values

Name	Formula	R.T. (s)	Area	Mass ⊿ (Da)	Similarity	Name	Formula	R.T. (s)	Area	Mass ⊿ (Da)	Similarity
α-Thujene	C ₁₀ H ₁₆	373 s, 0.784 s	13388350	-0.01	954	Carvone	C ₁₀ H ₁₄ O	675 s, 1.243 s	2065844	0.00	942
α-Pinene	C ₁₀ H ₁₆	381 s, 0.808 s	684188347	0.00	967	Isomyrcenol	C ₁₀ H ₁₆ O	723 s, 1.188 s	3122238	N/A	843
Camphene	C ₁₀ H ₁₆	397 s, 0.828 s	78914464	-0.01	973	p-Mentha-1,4-dien-7-ol	C ₁₀ H ₁₆ O	731 s, 1.199 s	2405894	N/A	831
β-Pinene	C ₁₀ H ₁₆	425 s, 0.868 s	678661250	0.00	965	α-Cubebene	C ₁₅ H ₂₄	765 s, 0.925 s	7336729	0.00	935
β-Myrcene	C ₁₀ H ₁₆	435 s, 0.908 s	407411967	0.03	937	Copaene	$C_{15}H_{24}$	789 s, 0.955 s	12568210	0.00	939
α-Phellandrene	C ₁₀ H ₁₆	451 s, 0.869 s	12521026	-0.01	916	(+)-Sativen	$C_{15}H_{24}$	803 s, 0.978 s	1107397	0.00	888
3-Carene	$C_{10}H_{16}$	457 s, 0.852 s	29705496	-0.01	935	(±)-β-Isocomene	$C_{15}H_{24}$	805 s, 1.014 s	16996864	0.00	850
α-Terpinene	C ₁₀ H ₁₆	463 s, 0.868 s	3134640	-0.01	812	trans-α-Bergamotene	$C_{15}H_{24}$	817 s, 0.974 s	26143508	0.00	957
2-Menthene	C ₁₀ H ₁₈	467 s, 0.837 s	475612	0.00	846	α-Santalene	$C_{15}H_{24}$	821 s, 0.966 s	28314886	0.00	956
p-Cymene	C ₁₀ H ₁₄	471 s, 0.939 s	203310101	-0.01	987	Caryophyllene	$C_{15}H_{24}$	827 s, 1.026 s	182078148	0.00	976
D-Limonene	C ₁₀ H ₁₆	475 s, 0.924 s	430592997	-0.03	931	α-Guaiene	$C_{15}H_{24}$	837 s, 0.989 s	67059903	0.00	949
β-Phellandrene	C ₁₀ H ₁₆	477 s, 0.889 s	96796169	-0.01	937	(E)-β-Famesene	$C_{15}H_{24}$	843 s, 0.967 s	107387589	0.01	940
Eucalyptol	C ₁₀ H ₁₈ O	479 s, 0.916 s	65403054	0.00	937	Humulene	C ₁₅ H ₂₄	853 s, 1.055 s	306927182	0.00	989
β-Ocimene	$C_{10}H_{16}$	481 s, 0.866 s	25381328	0.00	947	Alloaromadendrene	$C_{15}H_{24}$	859 s, 1.050 s	2716555	0.00	928
m-Cymene	C ₁₀ H ₁₄	485 s, 0.911 s	278381	-0.01	834	γ-Muurolene	C ₁₅ H ₂₄	867 s, 1.050 s	30024124	0.00	910
α-Ocimene	$C_{10}H_{16}$	491 s, 0.887 s	287724336	0.00	967	β-Selinene	C ₁₅ H ₂₄	877 s, 1.075 s	25274135	0.00	967
cis-Sabinene hydrate	C ₁₀ H ₁₈ O	513 s, 0.937 s	4198026	-0.01	943	β-Bisabolene	C ₁₅ H ₂₄	887 s, 1.008 s	19223322	0.00	947
Terpinolene	$C_{10}H_{16}$	533 s, 0.923 s	21973373	-0.01	936	α-Bulnesene	C ₁₅ H ₂₄	889 s, 1.056 s	58923547	0.00	937
Fenchone	C ₁₀ H ₁₆ O	535 s, 1.048 s	56410861	0.00	986	γ-Cadinene	C ₁₅ H ₂₄	895 s, 1.085 s	6074040	0.00	921
Linalool	C ₁₀ H ₁₈ O	541 s, 0.945 s	122086671	0.00	926	Guaia-3,9-diene	C ₁₅ H ₂₄	903 s, 1.085 s	32816955	0.00	870
Perillene	C ₁₀ H ₁₄ O	543 s, 0.951 s	49131901	0.00	947	Calamenene	C ₁₅ H ₂₂	903 s, 1.145 s	14266609	N/A	901
cis-Pinen-3-ol	C ₁₀ H ₁₆ O	551 s, 1.037 s	2281959	N/A	793	Selina-3,7(11)-diene	C ₁₅ H ₂₄	919 s, 1.089 s	90112337	0.00	927
Fenchol	C ₁₀ H ₁₈ O	557 s, 0.999 s	55025158	0.00	987	Germacrene B	$C_{15}H_{24}$	931 s, 1.136 s	37709215	0.00	944
Myroxide	C ₁₀ H ₁₆ O	579 s, 1.014 s	9528563	0.04	887	Dendrasaline	C ₁₅ H ₂₂ O	933 s, 1.064 s	750552	-0.05	799
trans-Pinocarveol	C ₁₀ H ₁₆ O	583 s, 1.057 s	7778044	N/A	843	β-Calacorene	$C_{15}H_{20}$	933 s, 1.219 s	284816	-0.01	857
L-camphor	C ₁₀ H ₁₆ O	589 s, 1.150 s	695704	-0.01	917	Caryophyllene oxide	$C_{15}H_{24}O$	949 s, 1.212 s	39083444	0.01	975
Pinocarvone	C ₁₀ H ₁₄ O	605 s, 1.183 s	1327877	-0.01	917	cis-Z-α-Bisabolene epoxide	$C_{15}H_{24}O$	983 s, 1.239 s	2262152	0.00	799
Borneol	C ₁₀ H ₁₈ O	607 s, 1.070 s	9611931	-0.01	973	Santalol, cis,α-	$C_{15}H_{24}O$	1017 s, 1.281 s	950918	N/A	797
α-Terpineol	C ₁₀ H ₁₈ O	629 s, 1.081 s	12095260	N/A	945	Corymbolone	$C_{15}H_{24}O_2$	1149 s, 1.598 s	210905	0.00	849
Cosmen-2-ol	C ₁₀ H ₁₆ O	639 s, 1.084 s	2643945	-0.01	887	m-Camphorene	C ₂₀ H ₃₂	1179 s, 1.096 s	7314409	0.01	943
Carveol	C ₁₀ H ₁₆ O	653 s, 1.136 s	1911682	0.01	849	p-Camphorene	C ₂₀ H ₃₂	1199 s, 1.113 s	2581166	0.02	936

Statistical Analysis of Terpene GCxGC-TOFMS Data

Data Proce	essing	Method - "2D T 背 😭 🔙 🕵 🕽	erpene: ∓	s Target M	ethod"	C									
Mass	Enable Target Analyte Finding													Finding	
Calibrati		Enable E-TAF	Merge	NTD® peak	data wi	th ma	tching Targ	get Analy	te peaks	A	Analyte:	29_Caryop	hyllene	last?	1 Table
Cullbrati										# 1	FO	ormula	Isotope	69.14	0.08
	Sm	ooth window size	points): Auto			•			2				79.11	0.08
			u							<u>3*</u>				91.09	0.08
Deals				0.0						5		**********		133.11	0.08
Реак	Pea	ak FWHH (second	s):	0.8											
Finding															
R	An	alytes to Find:				I	la: . = 1	1							
Target	#	Analyte	Formula	Most Abund	Toleran	Units	Start Time	End Time	Start 2nd Di	End 2nc	Min Ar	re Min Hei			
Analyte	22	22_Borneol	•••		0.08	Da	600 s	613 c	0.974888 5	100335	10	0 10			
Finding	23	23_nexanyuroury	•••		0.00	Da	609 S	632 c	0.932909 5	120	10	0 10			
Thinding	25	25 Nerol	•••		0.08	Da	655 s	661 s	0.95 3	1.15 s	10	0 10			
	26	26 Pulegone		•	0.08	Da	671 s	675 s	1,13718 5	27857 5	10	0 10			-
	27	27 GERANIOL			0.08	Da	677 s	681 s	0.95 s	1.2 s	10	0 10			=
	28	28 Geranyl acetat			0.08	Da	783 s	787 s	0.95 s	1.2 s	10	0 10			
Classific	29*	29 Caryophyllene			0.08	Da	824 s	829 s	0.8 s	1.2 s	10	0 10			
	30	30_(E)-β-Famesen	1	I	0.08	Da	841 s	847 s	0.85 s	1.15 s	10	0 10			Ψ.
668					GC:	KGC									
Retention															
Index															
index															

Figure 6. Two-Dimensional Target Analyte Finding (TAF) processing method for rapid and robust identification of terpenes in cannabis contour plots.

- performance TOFMS.
- index filtering.
- the entourage effect in medical marijuana.

Figure 4. *C. indica* GCxGC-TOFMS Peak True spectra, library mass spectra for Limona ketone (A/B) and benzaldehyde (C/D).

Figure 5. C. indica GCxGC-TOFMS Peak True (deconvoluted) and library mass spectra for fenchone (A/B) and copaene (C/D).

Fig 7. Statistical processing results for 23 samples, 39 terpenes (m/z/rt) data matrix: A) PCA plot illustrates the lack of correlation between cannabis strain designations and terpene composition. B) A heat map displaying terpene variability in *indica* (green), sativa (blue), and hybrid strains (red).

Summary

• The Pegasus BT 4D facilitates fast and confident cannabis product "fingerprinting" through enhanced two-dimensional chromatographic resolution and high

Robust compound identification was achieved through spectral similarity searches of large, well-established databases, mass Δ determinations, and retention

• Statistical processing of cannabis distillates resulted in no group clustering, suggesting that different products contained similar types and concentrations of terpenes. • Alternative sample preparation techniques will be explored to increase extraction yields and include a majority of *cannabis* components to more effectively study