The Discovery of Potential Cancer Biomarkers in Human Plasma Using GC- and GCxGC-TOFMS

Introduction

- Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide (9th in the US)
- *Risk Factors:* Hepatitis (B &C), alcoholism, diabetes, obesity, and nonalcoholic fatty liver disease
- Critical Need: Early stage intervention and effective medical treatment for HCC

Objectives

- To complement a much larger study investigating metabolite levels in HCC versus liver cirrhosis (CIRR) patients
- To identify potential HCC biomarkers using a non-targeted, multiplatform approach

Samples

Plasma Metabolite Extraction (ACN/*i*-PrOH/H₂O) 64 Patient Samples HCC & CIRR)

Derivatization

Methoximation: 30 µL of methoxylamine (20 mg/mL in Pyridine), heat/agitate at 60 °C for 30 minutes

Silylation: 70 µL of MSTFA, heat/agitate at 60 °C for 30 minutes

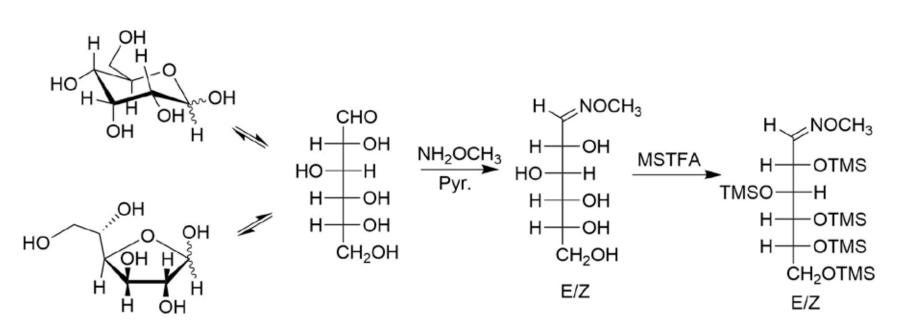


Figure 1: Two-step derivatization of glucose Instrument Parameters

Gas Chromatograph Autosampler	LECO GCxGC (Dual Stage Quad Jet Thermal Modulator) LECO L-PAL 3					
Injection	1µL, Split 20:1; 250 °C					
Carrier Gas	He @ 1.4 mL/min, Constant Flow					
Column Set	Rxi-5ms, 30 m x 0.25 mm i.d. x 0.25 μm (Restek) Rxi-17sil ms, 0.6 m x 0.25 mm i.d. x 0.25 μm (Restek)					
Temperature Program	50 °C (1 min), ramped 10 °C/min to 300 °C (12 min) Secondary oven offset was 5 °C relative to primary oven					
Modulation	3s modulation; temperature offset 15 °C relative to secondary oven					
Mass Spectrometer	LECO Pegasus [®] BT					
Ion Source Temperature	250 °C					
Ionization Mode	EI					
Mass Range (m/z)	45-750					
Acquisition Rate	10 spectra/s (200 spectra/s GCxGC-TOFMS)					

David E. Alonso¹, Habtom Ressom², Cristina Di Poto², and Joseph E. Binkley¹; ¹LECO Corporation, St. Joseph, MI; ²Georgetown University Medical School, Washington D.C.

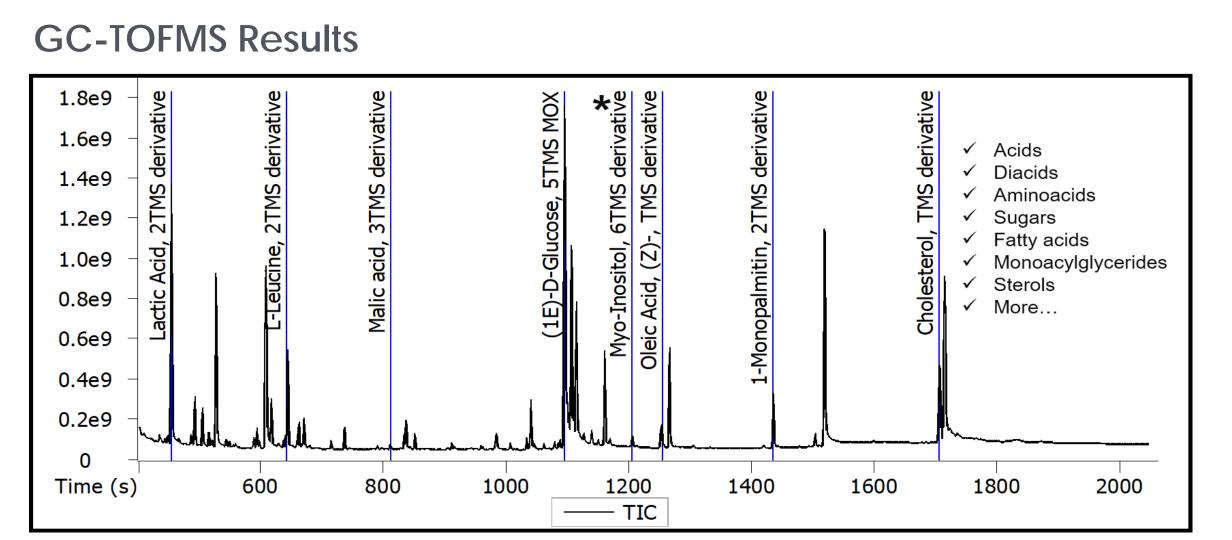


Figure 2: TIC showing the chemical diversity of plasma sample metabolites identified by GC-TOFMS.

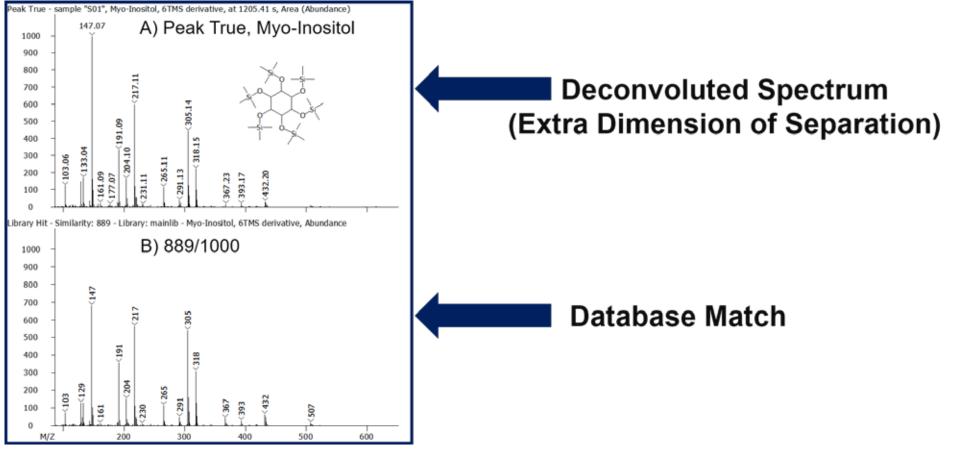


Figure 3: A) Peak True (Deconvoluted), and B) library spectra for myo-inositol.

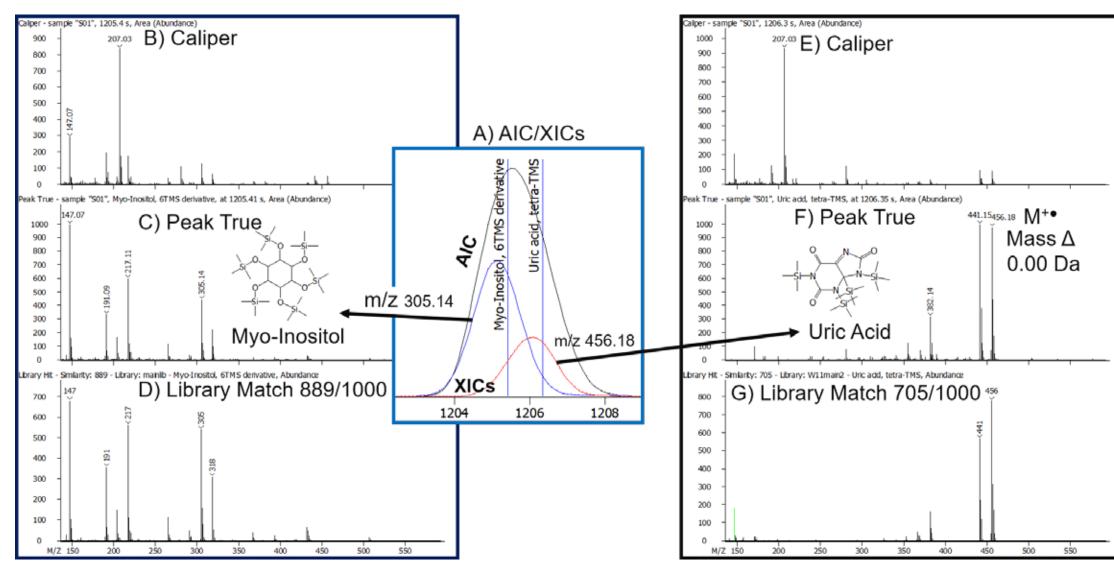


Figure 4: A) Analytical Ion Chromatogram (AIC) showing extracted ions (XICs) for coeluting myo-inositol & uric acid metabolites. Caliper, Peak True and Library spectra for myo-inositol (B-D) and uric acid (E-G). Identification of uric acid is supported by mass Δ calculations (M Δ = m/z_{obs} – m/z_{calc}).

Table 1: Representative Compounds in plasma (Untargeted Peak Find Processing)

Name	Formula	R.T. (s)	Similarity	Name	Formula	R.T. (s)	Similarity	Name	Formula	R.T. (s)	Similarity
Lactic Acid, 2TMS	C ₉ H ₂₂ O ₃ Si ₂	454	941	Erythritol, 4TMS	C ₁₆ H ₄₂ O ₄ Si ₄	831	879	(1Z)-D-Galactose, 5TMS MOX	C22H55NO6Si5	1119	817
Glycolic acid, 2TMS	C ₈ H ₂₀ O ₃ Si ₂	467	882	L-Methionine, 2TMS	C ₁₁ H ₂₇ NO ₂ SSi ₂	834	927	Palmitoleic acid, TMS	C ₁₉ H ₃₈ O ₂ Si	1150	921
l-Alanine, 2TMS	$C_9H_{23}NO_2Si_2$	492	927	L-Proline, 5-oxo-, 5TMS	C ₁₁ H ₂₃ NO ₃ Si ₂	837	931	Palmitic Acid, TMS	C ₁₉ H ₄₀ O ₂ Si	1161	950
2-Hydroxybutyric acid, 2TMS	C10H24O3Si2	515	909	Hydroxyproline, 3TMS	C ₁₄ H ₃₃ NO ₃ Si ₃	841	821	Myo-Inositol, 6TMS	C24H60O6Si6	1205	889
Oxalic acid, 2TMS	C ₈ H ₁₈ O ₄ Si ₂	518	897	L-Cysteine, 3TMS	C ₁₂ H ₃₁ NO ₂ SSi ₃	861	870	Uric acid, 4TMS	C ₁₇ H ₃₆ N ₄ O ₃ Si ₄	1206	705
2-Hydroxyisovaleric acid, 2TMS	C11H26O3Si2	549	952	2-Ketoglutaric acid, TMS MOX	C ₁₂ H ₂₅ NO ₅ Si	874	705	Margarate, TMS	C ₂₀ H ₄₂ O ₂ Si	1214	837
2-Aminobutanoic acid, 2TMS	$C_{10}H_{25}NO_2Si_2$	555	883	L-Ornithine, 3TMS	$C_{14}H_{36}N_2O_2Si_3$	901	775	Linoleic acid, TMS	C ₂₁ H ₄₀ O ₂ Si	1251	929
3-Hydroxyisovaleric acid, 2TMS	$C_{11}H_{26}O_3Si_2$	587	787	Glutamic acid, 3TMS	C ₁₄ H ₃₃ NO ₄ Si ₃	905	717	Oleic Acid, (Z)-, TMS	C ₂₁ H ₄₂ O ₂ Si	1254	941
2-Keto-N-Caproic acid, 2TMS MOX	C ₁₀ H ₂₁ NO ₃ Si	591	867	Phenylalanine, 2TMS	C15H27NO2Si2	911	922	Stearic acid, TMS	C ₂₁ H ₄₄ O ₂ Si	1266	946
L-Valine, 2TMS	C11H27NO2Si2	594	901	Lauric acid, TMS	C ₁₅ H ₃₂ O ₂ Si	920	699	Lanthionine, 4TMS	C ₁₈ H ₄₄ N ₂ O ₄ SSi ₄	1287	745
Urea, N,N'-bis(trimethylsilyl)-	C ₇ H ₂₀ N ₂ OSi ₂	608	787	Asparagine, 3TMS	$C_{13}H_{32}N_2O_3Si_3$	941	855	L-Cystine, 4TMS	$C_{18}H_{44}N_2O_4S_2Si_4$	1305	825
L-Leucine, 2TMS	$C_{12}H_{29}NO_2Si_2$	641	919	5-Hydroxytryptophan, 4TMS	C23H44N2O3Si4	943	722	Pseudo uridine, 5TMS	C24H52N2O6Si5	1329	756
Glycerol, 3TMS	C12H32O3Si3	644	931	Ribitol, 5TMS	C ₂₀ H ₅₂ O ₅ Si ₅	973	882	Arachidonic acid, TMS	C ₂₃ H ₄₀ O ₂ Si	1332	928
Isoleucine, 2TMS	C12H29NO2Si2	659	876	Glutamine, 4TMS	C17H42N2O3Si4	984	833	1-Monomyristin, 2TMS	C23H50O4Si2	1346	728
L-Proline, 2TMS	$C_{11H_{25}NO_2Si_2}$	662	874	I-Glutamine, 3TMS	C ₁₄ H ₃₄ N ₂ O ₃ Si ₃	1007	877	Arachidic acid, TMS	C ₂₃ H ₄₈ O ₂ Si	1363	835
Glycine, 3TMS	C ₁₁ H ₂₉ NO ₂ Si ₃	670	915	L-Ornithine, 4TMS	C ₁₇ H ₄₄ N ₂ O ₂ Si ₄	1037	894	Embramine	C ₁₈ H ₂₂ BrNO	1374	916
Succinic acid, 2TMS	C10H22O4Si2	672	753	Citric acid, 4TMS	C18H40O7Si4	1040	871	Uridine, 3TMS	C ₁₈ H ₃₆ N ₂ O ₆ Si ₃	1380	781
Glyceric acid, 3TMS	C12H30O4Si3	691	869	Myristic acid, TMS	C ₁₇ H ₃₆ O ₂ Si	1046	861	2-Palmitoylglycerol, 2TMS	C25H54O4Si2	1420	849
Fumaric acid, 2TMS	C10H20O4Si2	698	829	Caffeine	C ₈ H ₁₀ N ₄ O ₂	1056	919	1-Monopalmitin, 2TMS	C25H54O4Si2	1435	908
2,3-Dihydroxybutanoic acid, 3TMS	C ₁₃ H ₃₂ O ₄ Si ₃	703	784	1,5-Anhydroglucitol, 4TMS	C ₁₈ H ₄₄ O ₅ Si ₄	1062	871	2-Monostearin, 2TMS	C27H58O4Si2	1504	864
Nonanoic acid, TMS	C ₁₂ H ₂₆ O ₂ Si	707	880	D-Fructose, 5TMS MOX	C22H55NO6Si5	1079	922	α-Glyceryl arachidate, 2TMS	C29H62O4Si2	1599	804
Serine, 3TMS	$C_{12}H_{31}NO_{3}Si_{3}$	715	896	(1E)-D-Galactose, 5TMS MOX	C22H55NO6Si5	1088	924	γ-Tocopherol, TMS	C ₃₁ H ₅₆ O ₂ Si	1616	806
L-Threonine, 3TMS	C ₁₃ H ₃₃ NO ₃ Si ₃	737	946	(1E)-D-Glucose, 5TMS MOX	C22H55NO6Si5	1095	821	α-Tocopherol, TMS	C32H58O2Si	1692	839
S-Methylcysteine, 3TMS	C10H25NO2SSI2	762	833	L-Lysine, 4TMS	C ₁₈ H ₄₆ N ₂ O ₂ Si ₄	1099	820	Cholesterol, TMS	C ₃₀ H ₅₄ OSi	1707	923
β-Alanine, 3TMS	$C_{12}H_{31}NO_2Si_3$	765	774	L-Histidine, 3TMS	C15H33N3O2Si3	1100	752	Campesterol, 1TMS	C ₃₁ H ₅₆ OSi	1774	723
Aminomalonic acid, 3TMS	C ₁₂ H ₂₉ NO ₄ Si ₃	800	832	L-Tyrosine, 3TMS	C ₁₈ H ₃₅ NO ₃ Si ₃	1110	855				-
Malic acid, 3TMS	C13H30O5Si3	812	849	Mannitol, 6TMS	C24H62O6Si6	1114	947	Ave. Simila	rity = 85	5/100	D

GCxGC-TOFMS Results (Untargeted)

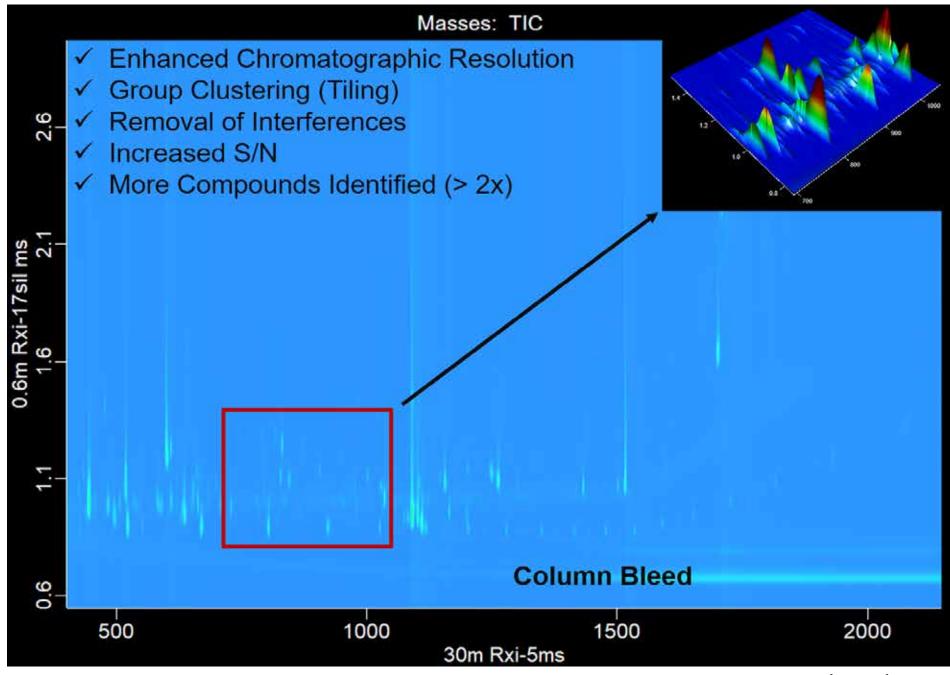
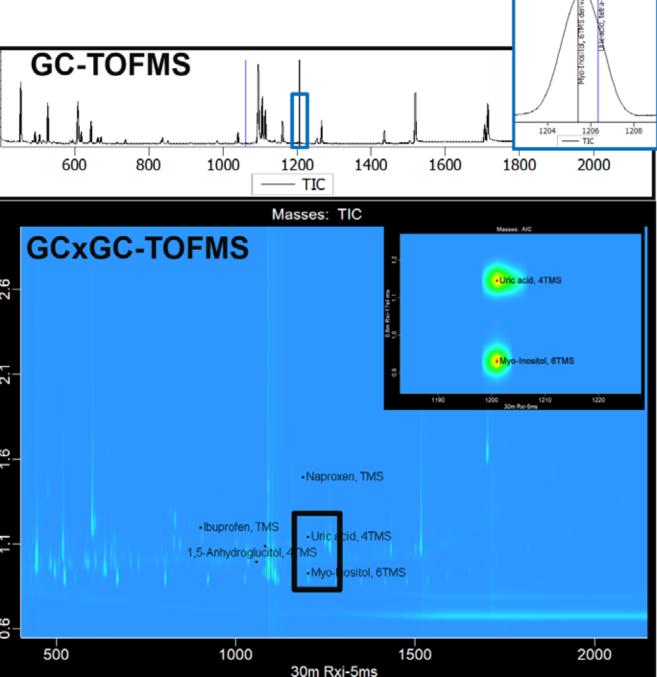



Figure 5: GCxGC-TOFMS contour plot and surface plot expansion (inset).

Name	R.T.(s)	Peak S/N	Similarity
Ibuprofen, TMS	Not Detected		
1,5-Anhydroglucitol, 4TMS	1061.64	2070	871
4-Hydroxyphenyllactic acid, 3TMS	Not Detected		
Naproxen, TMS	Not Detected		
Myo-Inositol, 6TMS	1205.41	2436	889
Uric acid, 4TMS	1206.35	375	705
Name	R.T. (s)	Peak S/N	Similarity
<i>Name</i> Ibuprofen, TMS	R.T. (s) 901 s, 1.199 s	Peak S/N 137	Similarity 828
		137	
Ibuprofen, TMS	901 s, 1.199 s	137 1830	828
Ibuprofen, TMS 1,5-Anhydroglucitol, 4TMS	901 s, 1.199 s 1057 s, 1.000 s	137 1830 873	828 926

Unknowns \rightarrow Knowns More Compounds Identified

1201 s, 1.147 s 4864 863 🛶 🚽

Figure 6: Comparison of GC- (top) and GCxGC-TOFMS (bottom) results. The enhanced chromatographic resolution in transitioning from 1D to 2D results in an improvement in S/N and similarity scores (upper/lower data tables).

Uric acid, 4TMS

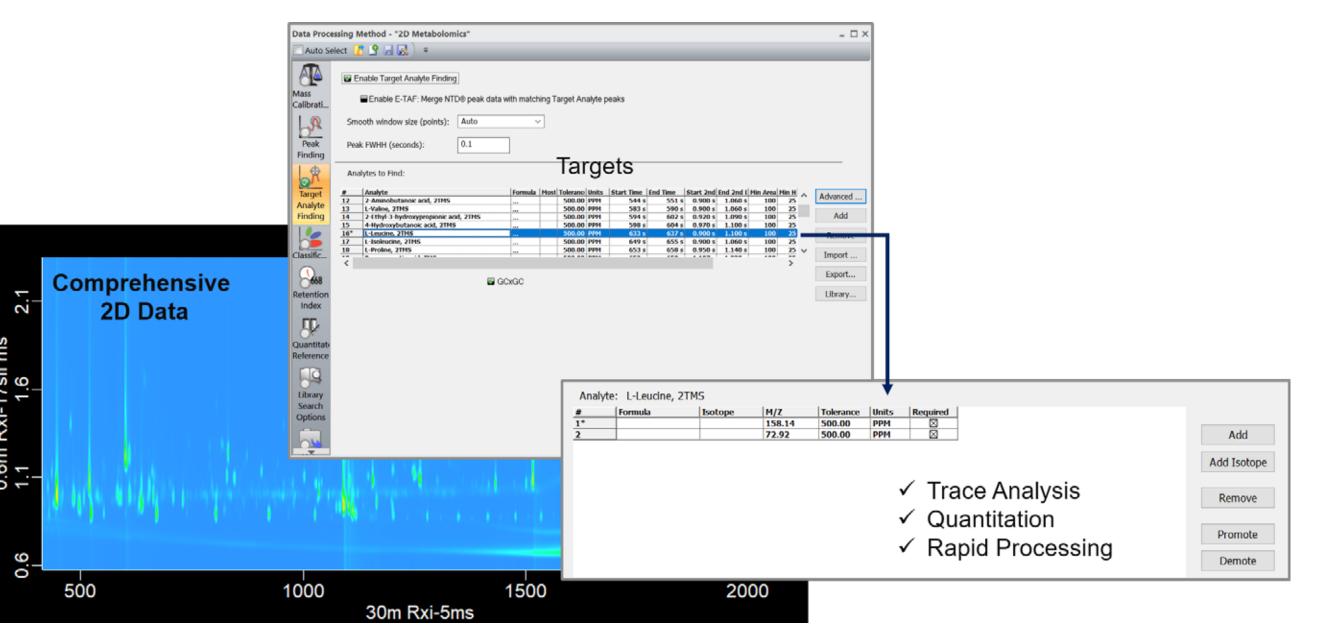


Figure 7: Target Analyte Finding (TAF) data processing method with metabolite list and target ions with tolerances.

GCxGC-TOFMS Target Analyte Processing

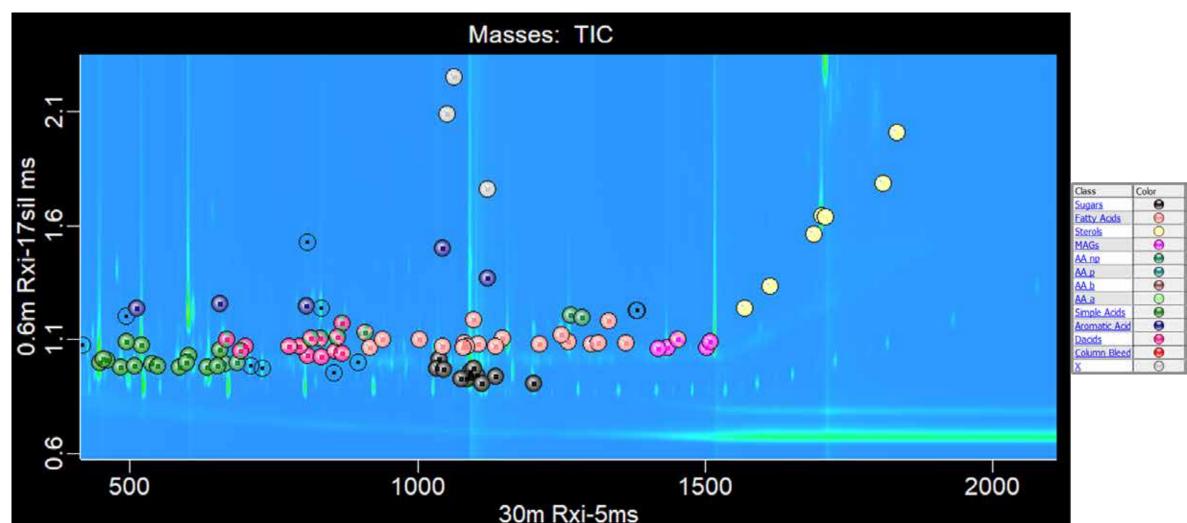


Figure 8: Contour plot displaying the results of Target Analyte Finding (TAF) of comprehensive GCxGC-TOFMS data. The color coded bubbles represent different classes of compounds identified

	R.T. (s) Area	Name	R.T. (s)	Area	Name	R.T. (s)	Area	
Acid, 2TMS 4	448 s, 1.005 s 1530743063	L-Methionine, 2TMS	829 s, 1.110 s	116146521	L-Tyrosine, 3TMS	1105 s, 1.085 s	173794020	
pic acid, TMS 4	454 s, 1.020 s 13162262	L-Aspartic acid, 3TMS	832 s, 1.030 s	3356604	D-Mannitol, 6TMS	1111 s, 0.915 s	386279467	
cacid, 2TMS 4	460 s, 1.015 s 80842344	L-5-Oxoproline, , 2TMS	832 s, 1.245 s	481524860	3-Indoleacetic acid, 2TMS	1120 s, 1.375 s	512142	
ne, 2TMS 4	484 s, 0.985 s 482966060	Erythronic acid, 4TMS	853 s, 0.960 s	1000486	Glucopyranose, 5TMS	1135 s, 0.945 s	27670238	
ic acid, 2-(methoxyimino)-3-methyl-, TMS 4	493 s, 1.095 s 13622033	L-Cysteine, 3TMS	856 s, 1.055 s	12124921	Palmitic Acid, TMS	1135 s, 1.075 s	1217644	
oxybutyric acid, 2TMS 5	508 s, 0.990 s 180287953	Creatinine enol, 3TMS	859 s, 1.115 s	9280518	Palmitelaidic acid, TMS	1147 s, 1.110 s	17556506	
ic acid, TMS 5	511 s, 1.240 s 428778	Pentanedioic acid, 2-hydroxy, 3TMS	868 s, 1.045 s	940599	Myo-Inositol, 6TMS	1201 s, 0.915 s	112559586	
acid, 2TMS 5	520 s, 1.080 s 784133934	Pentanedioic acid, 2-oxo,2TMS MOX	868 s, 1.175 s	8610200	Margarate, TMS	1210 s, 1.085 s	5001025	
oxybutyric acid, 2TMS 5	538 s, 1.000 s 88630520	L-Ornithine, 3TMS	895 s, 1.005 s	10006017	Oleic Acid, (Z)-, TMS	1249 s, 1.125 s	116038276	
obutanoic acid, 2TMS 5	547 s, 0.990 s 79490922	Phenylalanine, 2TMS	907 s, 1.135 s	108523725	Stearic acid, TMS	1261 s, 1.095 s	446806072	
e, 2TMS 5	586 s, 0.985 s 199449790	Dodecanoic acid, TMS	916 s, 1.070 s	15068359	Tryptophan, 3TMS	1264 s, 1.210 s	24587640	
-3-hydroxypropionic acid, 2TMS 5	598 s, 1.005 s 300073	Asparagine, 3TMS	937 s, 1.105 s	12024101	Lanthionine, 4TMS	1285 s, 1.200 s	2553020	
oxybutanoic acid, 2TMS 6	601 s, 1.035 s 8510894	L-Glutamine, 3TMS	1003 s, 1.105 s	103589292	L-Cystine, 4TMS	1300 s, 1.085 s	20578488	
ne, 2TMS 6	634 s, 0.985 s 235656845	L-Ornithine, 4TMS	1033 s, 0.980 s	55448880	Nonadecanoic acid, TMS	1312 s, 1.090 s	511285	
ucine, 2TMS 6	652 s, 0.990 s 83917335	Citric acid, 4TMS	1036 s, 1.020 s	221423396	Arachidonic acid, TMS	1330 s, 1.185 s	6171938	
ne, 2TMS 6	655 s, 1.060 s 328573200	Myristic acid, TMS	1042 s, 1.075 s	23015134	Arachidic acid, TMS	1360 s, 1.090 s	10312922	
neacetic acid, TMS 6	655 s, 1.265 s 537811	Hippuric acid, TMS	1042 s, 1.505 s	882709	Uridine, 3TMS	1378 s, 1.230 s	1786668	
, 3TMS 6	664 s, 1.000 s 286915045	D-Fructose 1, 5TMS MOX	1045 s, 0.975 s	502297	2-Palmitoylglycerol, 2TMS	1417 s, 1.065 s	33950465	
c acid, 2TMS 6	667 s, 1.105 s 31819297	D-Fructose 2, 5TMS MOX	1075 s, 0.935 s	116178769	1-Monopalmitin, 2TMS	1432 s, 1.070 s	155285362	
c acid, 3TMS 6	685 s, 1.005 s 42815119	Pentadecanoic acid, TMS	1078 s, 1.070 s	379262	Behenic acid, TMS	1450 s, 1.105 s	1364489	
c acid, bis-TMS 6	691 s, 1.055 s 8891312	4-Hydroxyphenyllactic acid, 3TMS	1081 s, 1.090 s	2936130	2-Monostearin, 2TMS	1501 s, 1.070 s	48790109	
oic acid, TMS 7	700 s, 1.075 s 19826030	D-Galactose (E), 5TMS MOX	1084 s, 0.935 s	39729792	1-Monooleoyigiyceroi, 2TMS	1507 s, 1.095 s	6823066	
3TMS 7	709 s, 0.990 s 109659036	Pentadecanoic acid, TMS	1084 s, 1.075 s	758140	δ-Tocopherol, TMS	1567 s, 1.245 s	396733	
onine, 3TMS 7	730 s, 0.980 s 158957563	D-Galactose (Z), 5TMS MOX	1090 s, 0.955 s	194365532	y-Tocopherol, TMS	1612 s, 1.340 s	1084349	
pic acid, TMS 7	775 s, 1.075 s 3660100	Sedoheptulose, 6TMS MOX	1090 s, 0.965 s	207254222	α-Tocopherol, TMS	1687 s, 1.565 s	5280690	
omalonic acid, 3TMS 7	793 s, 1.075 s 5616482	D-Glucose 1, 5TMS MOX	1093 s, 0.940 s	495733088	Cholesterol, TMS	1702 s, 1.645 s	240037185	
c acid, 3,5-dimethyl-, TMS 8	805 s, 1.255 s 6077820	L-Lysine, 4TMS	1096 s, 0.980 s	64860588	Cholestan-3-ol, TMS	1708 s, 1.640 s	1852286	
cid, 3TMS 8	808 s, 1.035 s 13730253	Histidine, tri-TMS	1096 s, 1.190 s	13386968	Deoxycholic Acid, 2TMS	1807 s, 1.790 s	5444685	
acid, 2TMS 8	814 s, 1.110 s 2264692	D-Glucose 2, 5TMS MOX	1102 s, 0.950 s	258338306	β-Sitosterol, TMS	1831 s, 2.010 s	3138035	
acid, 2TMS 8	314 s, 1.110 s 2264692	D-Glucose 2, 5TMS MOX	1102 s, 0.950 s	258338306	β-Sitosterol, TMS	1831 s, 2.010	s	

Table 2: TAF results table listing targeted metabolites, 2D retention times and areas.

Processing & Statistical Analysis

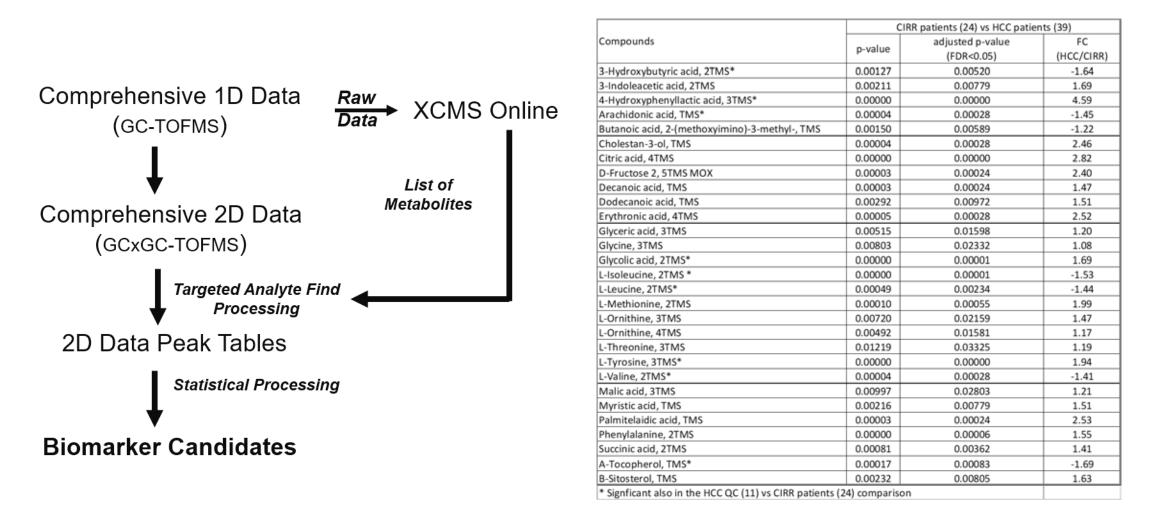


Figure 9: Data processing strategy (Left), and 2D data statistical results showing 29 significant metabolites (Probability Value, p<0.05 and False Discovery Rate, FDR<5%) in the comparison of CIRR and HCC patients (Right).

Summary

- Acquired & Processed GC and GCxGC-TOFMS Data for HCC & CIRR Patients
- Compound Characterization
- Spectral Similarity
- Mass Delta Calculations
- 1D à 2D; More Compounds Identified
- TAF was performed on the GCxGC-TOFMS data for the preparation of matrix file for further processing
- Statistical analysis of data facilitated identification of HCC biomarker candidates

Acknowledgements

NIH grants U01CA185188 and R01GM123766 (PI: Habtom Ressom, Georgetown University).