Untargeted Investigation of Non-Alcoholic Fatty Liver Disease Using Effective Mutiplatform GC-MS Instrumentation

Introduction

Background

- Non-alcoholic fatty liver disease (NAFLD) is a major medical issue in developed countries.
- NAFLD is the most common liver disease and parallels the obesity epidemic in the US.
- The purpose of this investigation is to utilize high performance Gas Chromatography Timeof-Flight Mass Spectrometry (GC-TOFMS) for increased analysis throughput of complex samples, followed by comprehensive, multidimensional chromatography and high resolution Time-of-Flight mass spectrometry (GCxGC-HRT) for discovery and confirmation of NAFLD biomarkers.

Methods

Samples

Rodents were fed different levels of copper with either distilled water or 30% fructose (w/v) for a period of several weeks. The animals were then euthanized and liver/plasma samples collected for TOFMS analysis. Metabolites were extracted with a water/methanol solvent mixture, dried extensively, and derivatized via a standard two-step procedure (MEOX, MTBSTFA). This methodology minimized sugar interferences (e.g., monosaccharides and disaccharides), and produced stable derivatives of alcohols, lactones, acids, amino acids, diacids, fatty acids, and sterols that could be easily analyzed by GC-TOFMS.

Instrumentation

Samples were analyzed using a combination of nominal and high resolution GC-TOFMS and GCxGC-HRT. Complementary electron and chemical ionization methods were also employed to assist in identification of metabolites. Acquired data were processed using untargeted methods for peak determination, spectral deconvolution, accurate mass formula determination, and spectral similarity searches for confident metabolite identifications.

Gas Chromatograph	Agilent 7890 with LECO L-Pal3 Autosampler
Injection	1 μL, Split 20:1; 270 °C
Carrier Gas	He @ 0.8 mL/min, Constant Flow
Column	Rxi-5 Sil MS, 20 m x 0.18 mm i.d. x 0.18 µm (Restek, Bellefonte, PA, USA)
Temperature Program	60 °C (0.50 min), ramped 36 °C/min to 320 °C (3 min)
Mass Spectrometer	LECO Pegasus BT
Ion Source Temperature	250 °C
Ionization Mode	El
Mass Range (m/z)	45-600
Acquisition Rate	10 spectra/s

Table 1. GC-TOFMS Parameters

Gas Chromatograph	Agilent 7890 with LECO L-Pal3 Autosampler
Injection	1μL, Split 20:1; 280 °C (1 μL, Splitless for CI)
Carrier Gas	He @ 1.0 mL/min, Constant Flow
Column 1	Rxi-5 MS, 30 m x 0.25 mm i.d. x 0.25 µm (Restek, Bellefonte, PA, USA)
Column 2	Rxi-17 Sil MS, 0.60 m x 0.25 mm i.d. x 0.25 µm (Restek, Bellefonte, PA, USA)
Temperature Program	60 °C (0.50 min), ramped 5 °C/min to 270 °C (6 min) Secondary oven maintained +10 °C relative to primary oven
Thermal Modulation (GCxGC)	4s with temperature maintained +15 °C relative to secondary oven
Mass Spectrometer	LECO Pegasus HRT
Ion Source Temperature	250 °C (EI); 200 °C (CI)
Ionization Mode	El and Cl (Reagent Gas: 5% NH_3 in CH_4)
Mass Range (m/z)	30-510 (EI); 60-1500 (CI)
Acquisition Rate	10 spectra/s (200 spectra/s GCxGC)

David E. Alonso¹, Xiang Zhang², Todd Richards¹, and Joe Binkley¹ | ¹LECO Corporation, St. Joseph, Michigan | ²Department of Chemistry and Biochemistry, University of Louisville, Louisville, Kentucky

Figure 1. Pegasus® BT GC-TOFMS.

Figure 2. Pegasus GC-HRT 4D.

Figure 3: A) eXtracted Ion Chromatogram (XIC) and B) TIC of a liver sample.

(B,C) and lysine (D,E). Representative analytes in liver sample (Similarity Ave. = 886)

· · · ·	•	. ,		1			
Metabolite	Formula	R.T.(Sec)	Similarity	Metabolite	Formula	R.T.(Sec)	Similarity
ctic acid, 2TBDMS derivative	$C_{15}H_{34}O_3Si_2$	273	866	L-Serine, 3TBDMS derivative	$C_{21}H_{49}NO_3Si_3$	366	910
ycolic acid, 2TBDMS derivative	C ₁₄ H ₃₂ O ₃ Si ₂	276	865	Thr, (3TBDMS)-	$C_{22H_{51}NO_3Si_3}$	372	870
anine diTBDMS	C ₁₅ H ₃₅ NO ₂ Si ₂	283	894	Myristic acid, TBDMS derivative	$C_{20}H_{42}O_2Si$	379	906
ycine, 2TBDMS derivative	C ₁₄ H ₃₃ NO ₂ Si ₂	287	909	Alanylglycine, 2TBDMS derivative	C ₁₇ H ₃₈ N ₂ O ₃ Si ₂	382	802
Hydroxybutyric acid, (R)-, 2TBDMS derivative	$C_{16}H_{36}O_{3}Si_{2}$	294	911	L-Phenylalanine, 2TBDMS derivative	$C_{21}H_{39}NO_2Si_2$	383	913
2-Aminobutyric acid, 2TBDMS derivative	C ₁₆ H ₂₇ NO ₂ Si ₂	297	889	Malic acid, 3TBDMS derivative	C ₂₂ H ₄₈ O ₅ Si ₃	384	852
Alanine, 2TBDMS derivative	C ₄ , H ₂ , NO ₂ Si ₂	303	856	Aspartic acid, triTBDMS	$C_{22}H_{49}NO_4Si_3$	391	897
methylpentobarbital	C ₄₂ H ₂₂ N ₂ O ₂	306	900	L-Cysteine, 3TBDMS derivative	C ₂₁ H ₄₉ NO ₂ SSi ₃	399	943
aline diTBDMS	Cu-HaoNOoSio	307	864	L-Glutamic acid, 3TBDMS derivative	$C_{23}H_{51}NO_4Si_3$	408	919
Leucine 2TBDMS derivative		314	937	Palmitic Acid, TBDMS derivative	$C_{22}H_{46}O_2Si$	410	833
	C H N OSi	314	922	L-Asparagine, 3TBDMS derivative	$C_{22}H_{50}N_2O_3Si_3$	414	873
		220	922	L-Lysine, 3TBDMS derivative	$C_{24}H_{56}N_2O_2Si_3$	424	917
	$C_{18} \Pi_{41} N O_2 S I_2$	320	943	Vaccenic acid, (Z)-, TBDMS derivative	C ₂₄ H ₄₈ O ₂ Si	435	837
Aminobutanoic acid, 21 BDMS derivative	$C_{16}H_{37}NO_2SI_2$	325	831	Histidine triTBDMS	$C_{24}H_{51}N_{3}O_{2}Si_{3}$	453	895
racil, 2TBDMS derivative	$C_{16}H_{32}N_2O_2Si_2$	327	929	Arachidonic Acid, TBDMS derivative	C ₂₆ H ₄₆ O ₂ Si	455	899
Proline, 2TBDMS derivative	C ₁₇ H ₃₇ NO ₂ Si ₂	328	918	L-Tyrosine, 3TBDMS derivative	C ₂₇ H ₅₃ NO ₃ Si ₃	459	922
aconic acid, 2TBDMS derivative	$C_{17}H_{34}O_4Si_2$	331	864	Uric acid, 4TBDMS derivative	$C_{29}H_{60}N_4O_3Si_4$	488	898
Pyroglutamic acid, 2TBDMS derivative	C ₁₇ H ₃₅ NO ₃ Si ₂	360	854	L-Tryptophan, 3TBDMS derivative	C ₂₉ H ₅₄ N ₂ O ₂ Si ₃	495	866
et. (2TBDMS)	C ₄ -H ₂₀ NO ₂ SSi ₂	363	868	Cholesterol TBDMS derivative		630	873

Statistical Analysis: Features \rightarrow Metabolites

Figure 5. XCMS online Cloud Plot (m/z vs retention time) showing a metabolite feature with a retention time of 7.55 minutes and EIC m/z = 440.396.

Table 4. Partial list of potential NAFLD biomarkers identified using XCMS online and ChromaTOF. Metabolites A-D were upregulated in liver samples, while citric acid was found in greater quantities in plasma. Stearic Acid was tentatively identified with the marginally acceptable similarity score of 703/1000

Feature	m/z	BT Similarity	Metabolite
А	341.28	703	Stearic Acid?
В	418.36	897	Aspartic Acid
С	431.43	917	Lysine
D	440.39	895	Histidine
E	459.33	726	Citric Acid

Figure 4. A) ChromaTOF[®] brand software deconvolution results - liver sample. Peak True (deconvoluted) and library spectra for aconitic acid

time of 6.52 minutes and EIC m/z = 418.36. ChromaTOF processing resulted in the identification of the metabolite aspartic acid.

- Enhanced Chromatographic and Mass Spectral Resolution
- Group Clustering Structured Chromatograms
- Removal of background interferences (e.g., column bleed, solvents, etc.)
- Improved Characterization of Compounds in Complex Matrices

Pantothenic acid (2TBDMS)

Figure 9. A) GC-HRT and B) GC-HRT 4D data. A table illustrating the benefits of combining enhanced chromatographic and mass spectral resolution for confident identification of metabolites differentiating the different groups (e.g., fumaric acid).

- throughput of complex samples.
- adduct ions.
- NAFLD as a direct result of this methodology.

Robust Characterization and Confirmation: GC-HRT

Figure 8. Peak True EI-HRT, library match, and CI-HRT data for stearic acid.

Discovery: GCxGC-HRT

Figure 10. A) GC-HRT and B) GC-HRT 4D data for pantothenic acid (Vitamin B_{5}).

Summary

High performance GC-TOFMS was used for increased analysis

 GC-HRT facilitated confident identification of metabolites using complementary high resolution mass spectrometry ionization methods for formula determinations for fragment, molecular, and

The combination of enhanced chromatographic and mass spectral resolution (Figure 11) led to superior analysis of complex matrices by transforming unknowns to known compounds in metabolomics data. Compounds were confidently identified as potential biomarkers for

Figure 11. GC-HRT 4D data for citric acid