

Strategic Utilization of Gas Chromatography with Both Nominal and High **Resolution Time-of-Flight Mass Spectrometers for Metabolomic Studies**

David E. Alonso, Jeffrey S. Patrick, and Joe Binkley | LECO Corporation, St. Joseph, MI USA

Introduction

Metabolomics is a critical tool for biological research¹

- Close proximity to phenotype
- Quick insight into system perturbations

Results and Discussion – Instrumental Platforms

Metabolomics – The Challenges^{2,3}

- Overwhelming number of metabolites
- Chemical diversity of metabolites
- Large concentration range
- Variability Diet, metabolism
- Bottleneck Confident compound identification

GC-TOFMS – Pegasus[®] HT/4D (Throughput & Discovery)

• Speed and robustness

- Enhanced sensitivity Cryogenic Focusing Unprecedented chromatographic resolution Peak True Deconvolution
- Large, well established databases (e.g., NIST) **One Injection** \rightarrow **Rich Data**

Pegasus HT/4D

GC-HR TOFMS – Pegasus HRT (Discovery & Confirmation)

- Speed and robustness
- Chromatographic resolution
- High Resolution Deconvolution[™]
- High resolution accurate mass:
 - 1. Spectral similarity searches
 - 2. Formulas for fragment, molecular and adduct ions

Pegasus HRT

Experimental

Table 1: Pegasus HT – Representative Compounds

Name	Formula	R.T. (s)	Retention Index	Area	Similarity
Lactic Acid 2TMS	$C_9H_{22}O_3Si_2$	414	220344	78412	926
Alanine 2TMS	$C_9H_{23}NO_2Si_2$	442	250961	28186763	853
Pyruvic Acid MEOX 2TMS	$C_9H_{21}NO_3Si_2$	471	282442	96993	809
Valine 2TMS	C ₁₁ H ₂₇ NO ₂ Si ₂	508	322255	15086154	895
Leucine 2TMS	$C_{12}H_{29}NO_2Si_2$	536	355568	7506780	873
Phosphate 3TMS	C ₉ H ₂₇ O ₄ PSi ₃	539	359187	14704044	901
Isoleucine 2TMS	$C_{12}H_{29}NO_2Si_2$	547	368354	4513200	878
Proline 2TMS	$C_{11}H_{25}NO_2Si_2$	549	371129	12961273	902
Glycine 3TMS	$C_{11}H_{29}NO_2Si_3$	553	376557	16536857	892
Glyceric Acid 3TMS	$C_{12}H_{30}O_4Si_3$	563	388940	281511	842
Serine 3TMS	$C_{12}H_{31}NO_3Si_3$	576	405947	3262088	900
Threonine 3TMS	$C_{13}H_{33}NO_3Si_3$	588	421527	2432941	897
5-oxo-Proline 2TMS	$C_{11}H_{23}NO_3Si_2$	643	492895	10753295	873
Glutamic Acid 3TMS	$C_{14}H_{33}NO_4Si_3$	676	537217	1057351	827
Phenylalanine 2TMS	C ₁₅ H ₂₇ NO ₂ Si ₂	682	544919	2205667	868
Asparagine 3TMS	$C_{13}H_{32}N_2O_3Si_3$	695	563027	499990	898
Glutamine 4TMS	$C_{17}H_{42}N_2O_3Si_4$	716	591899	1907951	847
Glutamine 3TMS	$C_{14}H_{34}N_2O_3Si_3$	729	609091	12998376	870
Ornithine 4TMS	$C_{17}H_{44}N_2O_2Si_4$	745	630514	4933987	882
Citric Acid 4TMS	C ₁₈ H ₄₀ O ₇ Si ₄	745	630923	943974	803
1,5-Anhydro-D-sorbitol 4TMS	C ₁₈ H ₄₄ O ₅ Si ₄	757	647024	4551170	901
Caffeine	$C_8H_{10}N_4O_2$	759	650163	239658	817
Lysine 4TMS	$C_{18}H_{46}N_2O_2Si_4$	776	672963	4824013	739
Tyrosine 3TMS	C ₁₈ H ₃₅ NO ₃ Si ₃	782	681175	5195386	860
Glucose MEOX 5TMS	$C_{22}H_{55}NO_6Si_5$	813	723878	70168404	791
9Z,12Z-Octadecadienoic acid TMS	$C_{21}H_{40}O_2Si$	823	737702	2409582	916
Uric acid 4TMS	$C_{17}H_{36}N_4O_3Si_4$	829	746051	2464071	819
Oleic acid TMS	$C_{21}H_{42}O_2Si$	855	781656	1174025	926
Octadecanoic acid TMS	$C_{21}H_{44}O_2Si$	861	789663	25117086	902
Tryptophan 3TMS	$C_{20}H_{36}N_2O_2Si_3$	863	793114	3414435	921
Arachidonic Acid TMS	$C_{23}H_{40}O_2Si$	895	837441	1703921	933
Vitamine E TMS	C ₃₂ H ₅₈ O ₂ Si	1082	1076776	450887	787
Cholesterol TMS	C ₃₀ H ₅₄ OSi	1095	1091081	46976466	870

Fig. 3: Pegasus 4D Contour Plot of NIST Human Plasma (Top). Plot Expansion **Highlighting Identified Compounds** In NIST Human Plasma (Bottom).

Table 2: Citrulline and Palmitoleic Acid TMS Derivatives in NIST Human Plasma⁴

Name	Formula	R.T. (s)	Area	Similar
Palmitoleic Acid TMS	$C_{19}H_{38}O_2Si$	1925 , 1.515	75121	892
Citrulline 4TMS	$C_{18}H_{45}N_3O_3Si_4$	1710, 1.690	22895	700

Monosaccharides & Related Compound

Fig. 4: Pegasus HRT – NIST Human Plasma.

Table 3: Pegasus HRT – Representative Compounds

Metabolite	Formula	Ion	Observed m/z	Expected m/z	Mass Accuracy (ppm)
Lactic Acid 2TMS	$C_9H_{22}O_3Si_2$	$[M-C_4H_9O_2Si]^+$	117.07302	117.07318	1.37
Alanine 2TMS	$C_9H_{23}NO_2Si_2$	$[M-C_4H_9O_2Si]^+$	116.089	116.08908	0.70
Pyruvic Acid MEOX 2TMS	$C_9H_{21}NO_3Si_2$	M*+	247.10526	247.10545	-0.75
Valine 2TMS	$C_{11}H_{27}NO_2Si_2$	$[M-C_4H_9O_2Si]^+$	144.1203	144.12038	0.53
Leucine 2TMS	$C_{12}H_{29}NO_2Si_2$	$[M-C_4H_9O_2Si]^+$	158.13595	158.13601	0.36
Phosphate 3TMS	$C_9H_{27}O_4PSi_3$	M*+	314.09492	314.09493	-0.02
Isoleucine 2TMS	$C_{12}H_{29}NO_2Si_2$	$[M-C_4H_9O_2Si]^+$	158.13595	158.13609	0.90
Proline 2TMS	$C_{11}H_{25}NO_2Si_2$	$[M-C_4H_9O_2Si]^+$	142.10465	142.10468	0.17
Glycine 3TMS	$C_{11}H_{29}NO_2Si_3$	$[M-C_4H_9O_2Si]^+$	174.11288	174.1131	1.26
Glyceric Acid 2TMS	$C_{12}H_{30}O_4Si_3$	$[M-C_5H_{13}O_2Si]^+$	189.07616	189.07614	-0.09
Serine 3TMS	$C_{12}H_{31}NO_3Si_3$	$[M-C_4H_9O_2]^+$	204.12344	204.1235	0.28
Threonine 3TMS	$C_{13}H_{33}NO_3Si_3$	$[M-C_5H_{13}OSi]^+$	218.10271	218.10269	-0.06
5-oxo-Proline 2TMS	$C_{11}H_{23}NO_3Si_2$	M*+	273.12073	273.1211	-1.35
Glutamic Acid 3TMS	$C_{14}H_{33}NO_4Si_3$	M*+	363.17109	363.17119	-0.28
Phenylalanine 2TMS	C ₁₅ H ₂₇ NO ₂ Si ₂	$\left[M-C_{7}H_{7}\right]^{+}$	218.10271	218.10274	0.15
Asparagine 3TMS	$C_{13}H_{32}N_2O_3Si_3$	M*+	348.17193	348.17152	1.16
Glutamine 4TMS	$C_{17}H_{42}N_2O_3Si_4$	$[M-C_4H_9O_2Si]^+$	317.18952	317.18906	-1.45
Glutamine 3TMS	$C_{14}H_{34}N_2O_3Si_3$	M*+	362.1873	362.18717	0.35
Ornithine 4TMS	$C_{17}H_{44}N_2O_2Si_4$	M*+	420.24755	420.24744	0.26
Citric Acid 4TMS	C ₁₈ H ₄₀ O ₇ Si ₄	$[M-C_7H_{19}O_3Si_2]^+$	273.09729	273.0974	0.40
Caffeine	$C_8H_{10}N_4O_2$	M*+	194.07969	194.07983	-0.69
1,5-Anhydro-D-sorbitol 4TMS	C ₁₈ H ₄₄ O ₅ Si ₄	M*+	452.22579	452.22603	-0.54
Lysine 4TMS	$C_{18}H_{46}N_2O_2Si_4$	M*+	434.26306	434.26309	-0.06
Tyrosine 3TMS	C ₁₈ H ₃₅ NO ₃ Si ₃	$[M-C_{10}H_{15}OSi]^+$	218.10271	218.10292	0.95
Glucose MEOX 5TMS	$C_{22}H_{55}NO_6Si_5$	$[M-C_7H_{22}NO_2Si_2]^+$	361.16812	361.16857	1.26
Uric Acid 4TMS	$C_{17}H_{36}N_4O_3Si_4$	M*+	456.18649	456.1859	1.29
9Z,12Z-Octadecadienoic Acid TMS	$C_{21}H_{40}O_2Si$	M*+	352.27892	352.27921	-0.83
Oleic acid TMS	$C_{21}H_{42}O_2Si$	M*+	354.2944	354.29486	-1.28
Octadecanoic acid TMS	$C_{21}H_{44}O_2Si$	M*+	356.31019	356.31051	-0.90
Tryptophan 3TMS	$C_{20}H_{36}N_2O_2Si_3$	$[M-C_8H_{20}NO_2Si_2]^+$	202.10465	202.10471	0.29
Arachidonic acid TMS	$C_{23}H_{40}O_2Si$	$[M-C_{19}H_{31}]^+$	117.03663	117.03661	-0.19
Vitamin E TMS	C ₃₂ H ₅₈ O ₂ Si	M*+	502.42006	502.42006	0.00
Cholesterol TMS	C ₃₀ H ₅₄ OSi	M*+	458.39421	458.39384	0.79

Results and Discussion – The El & CI-HRT Advantage

EI-HRT

EI & CI-HRT

Rich Data = Excellent Spectral Similarity Scores

Formulae for Molecular Adducts: Confident Identifications

Sample Preparation

Derivatization

Fig. 1: A Wide Variety of Compounds Amenable to GC-TOFMS Analysis (Top); After Derivatization (Bottom).

plasma samples were treated with 25 μ L of MEOX Blood (20 mg/mL in pyridine) and heated at 60°C for 1 hour. Samples were then with 50 μ L of MSTFA and heated at 60°C for treated 1 hour. The MEOX reagent was spiked with OFN to monitor instrument performance and fatty acid methyl esters for calculation of retention index values.

Instrument Parameters

He @ 1.0 ml/min	
Rxi-5 MS, 30 m x 0.25 mm x 0.25 μm (Restek)	
4 min at 70°C, ramped 20°C/min to 300°C, held 6 min	
50-510 m/z	
	He @ 1.0 ml/min Rxi-5 MS, 30 m x 0.25 mm x 0.25 μm (Restek) 4 min at 70°C, ramped 20°C/min to 300°C, held 6 min 50-510 m/z

Fig. 7: El and CI-HRT Data for Glucose MEOX 5TMS.

Source Temp	250°C
Acquisition Rate	10 spectra/s

Pegasus 4D (Additions and Changes to HT Parameters)			
Column Two	Rtx-200, 1.5 m x 0.25 mm x 0.25 μm (Restek)		
Temp Program	4 min at 70°C, ramped 5°C/min to 300°C, held 10 min; Secondary oven maintained +5°C relative to primary		
Modulation	5 s with temperature maintained $+15$ relative to 2^{nd} oven		
Acquisition Rate	200 spectra/s		

Pegasus HRT	
Carrier Gas	He @ 1.0 ml/min
Column	Rxi-5 MS, 30 m x 0.25 mm x 0.25 μm (Restek)
Temp Program	4 min at 70°C, ramped 10°C/min to 300°C and held 7 min
Mass Range	30-600 m/z (Cl 65-1000 m/z; reagent gas 5% NH_3 in CH_4)
Acquisition Rate	12 spectra/s
Source Temp	250°C

Fig. 6: Pegasus HRT – Peak True Mass Spectrum for Lysine 4TMS.

Summary

The Pegasus series of mass spectrometers are indispensable tools for metabolomics research:

Throughput

• Discovery

Confirmation

GC-HRT analyses resulted in confident metabolite identifications:

• Spectral similarity searches

• Formulae for fragment, molecular, and adduct ions

Fig. 8: El and CI-HRT Data for 1-Monopalmitin 2TMS.

References

1) F. Hadacek, et al., Metabolomics, 2013, 9. 564-574.

2) P. Britz-McKibbin, et al., Chemical Reviews, 2013, 113, 2437-2468.

W.B. Dunn, et al., Metabolomics, **2013**, 9, S44-S66. 3)

Potential candidates to add to the GC-MS compound list in "Metabolite 4) Profiling of a NIST Standard Reference Material for Human Plasma (SRM 1950): GC-MS, LC-MS, NMR and Clinical Laboratory Analysis, Libraries, and Web-Based Resources," Anal. Chem., 2013, 85, 11725-11731