The Development of Untargeted Metabolite Profiling Methodology for the Analysis of Type-2 Diabetes Patient Plasma

Introduction

- Greater than 400 million adults are living with diabetes worldwide
- Diabetes is a major cause of blindness, kidney failure, heart attacks, strokes, and lower limb amputations
- Type 2 diabetes (T2D) accounts for about 90% of cases
- Current T2D monitoring: 1) Blood glucose, 2) periodic glycated hemoglobin (HbA1c), and 3) self-reporting
- There is a critical need for T2D biomarkers for early disease detection

Objectives

- 1) To use automated sample preparation and GC- and GCxGC-TOFMS analysis to collect plasma sample data
- 2) To use statistical processing software for the identification of potential T2D biomarkers

Analytical Platform

LOD < 20 fg LDR > 10⁴ Acq. Rate: Up to 500 sps

LECO Pegasus[®] BT 4D

Figure 1. GC- and GCxGC-TOFMS Instrument.

Sample Extraction & Automated Derivatization

Figure 2. Plasma general extraction procedure.

Figure 3. Two-step derivatization of glucose.

David E. Alonso, Joseph E. Binkley, and Nick Jones; LECO Corporation, Saint Joseph, Michigan, USA

Instrument Acquisition Parameters & Data Processing

Table 1. BT 4D instrument acquisition parameters.

Gas Chromatograph	Agilent 7890 and L-PAL 3 Autosampler
Injection	1.0 μL (Split 30:1; 250 °C)
Carrier Gas	He @ 1.4 mL/min, Constant Flow
Columns (1 st Dimension) (2 nd Dimension)	Rxi-5ms, 30 m x 0.25 mm i.d. x 0.25 μm (Restek) Rxi-17 sil ms 0.6 m x 0.25 mm i.d. x 0.25 μm (Restek)
Temperature Program	50 °C (1 min), ramped 5 °C/min to 150 °C (2 min), ramped 10 °C/min to 300 °C (12 min) Secondary oven maintained +5 °C relative to primary oven
Modulation	3 s with temperature maintained +15 °C relative to secondary oven
Mass Spectrometer	LECO Pegasus BT 4D
Ion Source Temperature	250 °C
Ionization Mode	El
Mass Range (m/z)	45-650
Acquisition Rate	1D: 12 spectra/s; 2D: 200 spectra/s

Name	GC-TOFMS	GCxGC-TOFMS
Aspartic acid, 3TMS	662	897
Methionine, 2TMS		902
Creatinine enol, 3TMS		786
Phenylalanine, 2TMS	747	901
Galactopyranose, 5TMS		791
Ornithine, 4TMS	762	922
1,5-Anhydroglucitol, 4TMS	935	932
2'-Hydroxy-5'-methylacetophenone, TMS		767

Peak True Spectra Generation Enable Peak Finding - finds peaks using NTD® ✓ Peak Find (Untargeted) ✓ Spectral Similarity Determinations Peak Finding • NIST 20 Quantitation signal: • Wiley 12 ion mass tolerance: 500 ✓ Retention Index Filtering Retention Index ✓ Mass Δ Value Determinations Retention Index Filtering Filter by Retention Index: Library Search Options (Filtering) Default RI Type Semi-Standard Non-Polar 💌 Allow estimated RI substitution for non-polar types Use other non-polar column type data if selected non-polar type data is absent

Figure 4. Untargeted processing of comprehensive data.

Results and Discussion

Figure 5. El contour plot for a control sample.

Name Lactic Acid, 2TM Glycolic acid, 2T Benzoic acid, me L-Alanine, 2TMS 2-Hydroxybuty Oxalic acid, 2TN Sarcosine, 2TMS 2-Ethylhexanoic α-Hydroxyisova 2-Aminobutanc 2-Ketoisocapro L-Valine, 2TMS Benzoic Acid, T Niacin, TMS L-Leucine, 2TMS L-Isoleucine, 2T **Benzeneacetic** L-Proline, 2TMS Glycine, 3TMS Succinic acid, 2 Glyceric acid, 3 Nonanoic acid, 1 Serine, 3TMS N-Formylglycine L-Threonine, 31 Glutaric acid, 2 (R)-5-Methylhyd 2-Deoxytetroni Decanoic acid, [•] 2-Aminomalon Niacinamide, TN

$GC \rightarrow GCxGC$ -TOFMS Data: More Metabolites Identified

Figure 6. A comparison of a GC-TOFMS TIC and GCxGC-TOFMS contour plot for a control Plasma sample.

Table 3. Representative compounds in a control plasma sample.

IS	Formula	R.T. (s)	Similarity			
IS			Similarity			
	$C_9H_{22}O_3Si_2$	430, 1.743	916			
MS	$C_8H_{20O_3Si_2}$	442.5, 1.742	910			
ethyl ester	$C_8H_8O_2$	462.5, 2.250	939			
5	$C_9H_{23}NO_2Si_2$	467.5, 1.704	927			
ic acid, 2TMS	$C_{10}H_{24}O_{3}Si_{2}$	492.5, 1.707	917			
1S	$C_8H_{18O_4Si_2}$	495, 1.853	898			
S	$C_9H_{23}NO_2Si_2$	500, 1.726	882			
acid, TMS	$C_{11}H_{24}O_2Si$	522.5, 1.739	869			
leric acid, 2TMS	$C_{11}H_{26}O_{3}Si_{2}$	525, 1.699	938			
oic acid, 2TMS	$C_{10H_{25}NO_2Si_2}$	532.5, 1.702	2 918			
c acid, TMS	$C_{10}H_{21}NO_3Si$	567.5, 1.894	908			
	$C_{11H_{27}NO_2Si_2}$	570, 1.703	922			
MS	$C_{10}H_{14}O_2Si$	595, 2.023	898			
	$C_9H_{13}NO_2Si$	615, 2.054	845			
5	$C_{12H_{29}NO_2Si_2}$	617.5, 1.704	935			
MS	$C_{12H_{29}NO_2Si_2}$	635, 1.708	911			
acid, TMS	$C_{11}H_{16}O_2Si$	637.5, 2.067	830			
	$C_{11H_{25}NO_2Si_2}$	640, 1.794	894			
	$C_{11H_{29}NO_2Si_3}$	647.5, 1.714	911			
MS	$C_{10}H_{22}O_4Si_2$	650, 1.850	913			
MS	$C_{12}H_{30}O_4Si_3$	667.5, 1.714	909			
TMS	$C_{12}H_{26}O_2Si$	685, 1.801	864			
	$C_{12H_{31}NO_3Si_3}$	692.5, 1.698	909			
e, 2TMS	$C_9H_{21}NO_3Si_2$	702.5, 1.989	871			
MS	$C_{13}H_{33}NO_3Si_3$	712.5, 1.688	927			
MS	$C_{11}H_{24}O_4Si_2$	720, 1.852	871			
dantoin, 2TMS	$C_{10}H_{22}N_{2}O_{2}Si_{2}$	725, 1.978	863			
c acid, 3TMS	$C_{13}H_{32}O_4Si_3$	747.5, 1.706	893			
MS derivative	$C_{13}H_{28}O_2Si$	760, 1.804	877			
c acid, 3TMS	$C_{12H_{29}NO_4Si_3}$	777.5, 1.807	910			
٨S	$C_9H_{14}N_2OSi$	780, 2.305	884			

ame	Formula	R.T. (s)	Similarity	Name	Formula	R.T. (s)	Similarity
monacic, 2TMS	$C_{10}H_{23}NO_2SSi_2$	782.5, 1.945	853	Histidine, 3TMS	$C_{15}H_{33}N_3O_2Si_3$	1080, 1.961	864
lalic acid, 3TMS derivative	$C_{13}H_{30}O_5Si_3$	790, 1.753	921	Glucose, (1Z)-, MOX 5TMS	$C_{22}H_{55}NO_6Si_5$	1085, 1.634	913
roglutamic acid, TMS derivative	C ₈ H ₁₅ NO ₃ Si	792.5, 2.397	896	L-Tyrosine, 3TMS	$C_{18}H_{35}NO_3Si_3$	1090, 1.824	924
dipic acid, 2TMS	$C_{12}H_{26}O_4Si_2$	797.5, 1.847	842	D-Mannitol, 6TMS	$C_{24}H_{62}O_6Si_6$	1092.5, 1.587	928
ythritol, 4TMS	$C_{16}H_{42}O_4Si_4$	807.5, 1.621	931	Ethyl α-D-glucopyranoside, 4TMS	$C_{20}H_{48}O_6Si_4$	1092.5, 1.682	874
spartic acid, 3TMS	$C_{13}H_{31}NO_4Si_3$	812.5, 1.759	897	Glucuronic acid, MOX 5TMS	$C_{22}H_{53}NO_7Si_5$	1097.5, 1.668	816
lethionine, 2TMS	$C_{11}H_{27}NO_2SSi_2$	812.5, 1.857	902	Glucopyranose, 5TMS	$C_{21}H_{52}O_6Si_5$	1117.5, 1.633	927
s-4-Hydroxy-L-proline, 3TMS	$C_{14}H_{33}NO_3Si_3$	817.5, 1.727	808	Palmitelaidic acid, TMS	$C_{19}H_{38}O_2Si$	1130, 1.856	909
Cysteine, 3TMS	$C_{12}H_{31}NO_2SSi_3$	840, 1.785	899	Xanthine, 3TMS	$C_{14}H_{28}N_4O_2Si_3$	1137.5, 2.138	792
nthranilic acid, 2TMS derivative	$C_{13}H_{23}NO_2Si_2$	880, 1.966	784	Palmitic Acid, TMS	$C_{19}H_{40}O_2Si$	1140, 1.821	920
Glutamic acid, 3TMS	$C_{14}H_{33}NO_4Si_3$	882.5, 1.763	916	5-Hydroxytryptophan, 4TMS	$C_{23}H_{44}N_2O_3Si_4$	1142.5, 2.051	832
reatinine enol, 3TMS	$C_{13}H_{31}N_3OSi_3$	890, 1.761	786	L-Citrulline, 3TMS	$C_{15}H_{37}N_3O_3Si_3$	1180, 1.997	813
nenylalanine, 2TMS	$C_{15}H_{27}NO_2Si_2$	890, 1.893	901	Scyllo-Inositol, 6TMS	$C_{24}H_{60}O_6Si_6$	1185, 1.616	898
aracetamol, 2TMS	$C_{14}H_{25}NO_2Si_2$	892.5, 1.894	899	O-Desmethylnaproxen, 2TMS	$C_{19}H_{28}O_{3}Si_{2}$	1212.5, 2.102	853
aurine, 3TMS	$C_{11}H_{31}NO_3SSi_3$	920, 1.865	842	Indole-3-lactic acid, 3TMS	$C_{20}H_{35}NO_{3}Si_{3}$	1225, 1.999	824
Lysine, 3TMS	$C_{15}H_{38}N_2O_2Si_3$	942.5, 1.714	836	9-Octadecenoic acid, (E)-, TMS	$C_{21}H_{42}O_2Si$	1232.5, 1.871	858
otinine	$C_{10}H_{12}N_2O$	947.5, 3.083	922	Stearic acid, TMS	$C_{21}H_{44}O_2Si$	1245, 1.831	901
donitol, 5TMS	$C_{20}H_{52}O_5Si_5$	952.5, 1.608	820	L-Tryptophan, 3TMS	$C_{20}H_{36}N_2O_2Si_3$	1247.5, 1.992	921
/litol, 5TMS	$C_{20}H_{52}O_5Si_5$	960, 1.600	925	Methyl linolelaidate	$C_{19}H_{34}O_2$	1255, 1.925	808
Glutamine, 3TMS	$C_{14}H_{34}N_2O_3Si_3$	985, 1.855	884	L-Cystine, 4TMS	$C_{18}H_{44}N_2O_4S_2Si_4\\$	1285, 1.825	860
H-Purin-6-ol, 2TMS	$C_{11}H_{20}N_4OSi_2$	1007.5, 2.202	891	Benzoylecgonine, TMS	C ₁₉ H ₂₇ NO ₄ Si	1292.5, 2.452	891
3-Methylhistidine, 2TMS derivative	$C_{13}H_{27}N_3O_2Si_2$	1010, 2.173	829	Arachidonic acid, TMS	$C_{23}H_{40}O_2Si$	1312.5, 1.961	903
rnithine, 4TMS	$C_{17}H_{44}N_2O_2Si_4$	1015, 1.684	922	Myo-Inositol, phosphate, 7TMS	$C_{27}H_{69}O_9PSi_7$	1355, 1.674	853
tric acid, 4TMS	C ₁₈ H ₄₀ O ₇ Si ₄	1020, 1.736	870	Uridine, 4TMS	$C_{21}H_{44}N_2O_6Si_4$	1360, 1.929	808
lyristic acid, TMS	$C_{17}H_{36}O_2Si$	1025, 1.809	917	Uridine, 3TMS	$C_{18}H_{36}N_2O_6Si_3$	1362.5, 2.017	798
ippuric acid, TMS	C ₁₂ H ₁₇ NO ₃ Si	1025, 2.398	803	Doconexent, TMS	$C_{25}H_{40}O_2Si$	1402.5, 2.035	913
5-Anhydroglucitol, 4TMS	$C_{18}H_{44}O_5Si_4$	1040, 1.713	932	1-Monopalmitin, 2TMS	$C_{25}H_{54}O_4Si_2$	1415, 1.808	838
-Hydroxy-5'-methylacetophenone, TMS	$C_{12}H_{18}O_2Si$	1040, 1.864	767	Sucrose, 8TMS	$C_{36}H_{86}O_{11}Si_8$	1460, 1.614	831
rosine, 2TMS	$C_{15}H_{27}NO_3Si_2$	1055, 2.029	798	γ-Tocopherol, TMS	$C_{31}H_{56}O_2Si$	1597.5, 2.213	804
D-Mannopyranose, 5TMS	$C_{21}H_{52}O_6Si_5$	1067.5, 1.657	870	Cholest-5-en-3-ol, (3α)-, TMS	C ₃₀ H ₅₄ OSi	1692.5, 2.658	843
alactose, MOX 5TMS	$C_{22}H_{55}NO_6Si_5$	1075, 1.630	913			Ave.	= 878

Compound Identification 1) Database Comparisons + Mass Delta Calculations

Figure 7. Peak True (Deconvoluted) and library mass spectra for aspartic acid (left) and methionine (right). The spectral similarity values were 897 and 902/1000 respectively. The mass delta values for the molecular ions was zero.

Compound Identification

2) Database Comparisons + Mass Delta Calculations + RI Filtering

Figure 8. Peak True (Deconvoluted) and library mass spectra for succinic acid (left) and myristic acid (right). The spectral similarity values were 913 and 917/1000 respectively. The mass delta values for the molecular ions was zero. The observed RI values were 1319 (Library RI = 1321) and 1852 (Library RI = 1850) respectively.

Statistical Processing

analytical.

Tile Based Fisher Ratio Analysis of Comprehensive Two Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry (GC×GC–TOFMS) Data using a Null Distribution Approach Brendon A. Parsons, Luke C. Marney, W. Christopher Siegler, Jamin C. Hoggard, Bob W. Wright, and Robert E. Synovec Anal. Chem. 2015, 87, 7, 3812-3819.

 $\frac{\sigma_{cl}}{\sigma_{cl}} = \frac{class \ to \ class \ variation}{\sigma_{cl}}$ Fisher Ratio = σ_{2err} within class variation

Figure 10. ChromaTOF Tile results showing elevated levels of glucuronic acid and myo-inositol in diseased samples.

Summary

- \checkmark We developed analytical methodology for the analysis of T2D plasma samples.
- ✓ The method included automated sample derivatization, data collection, and processing, as well as statistical analysis with ChromaTOF Tile software.