

Implementation of Fisher ratio analysis for metabolite discovery in pacu fish using comprehensive two-dimensional gas chromatography with mass spectrometry

Introduction

Tile-based Fisher ratio (F-ratio) analysis is used to discover and quantify 32 metabolites in Argentinian pacu fish, using data collected by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) via a LECO Pegasus BT 4D instrument. The experimental design for Fisher ratio (Fratio) analysis has two sample classes: pacu fish (class one), and pacu fish spiked with a 32 metabolite standard (class two). Pacu fish are often farmed along with rice crops, which introduces sources of contamination that may alter the fish metabolome, making such a study challenging. To address this challenge, this GC×GC-TOFMS instrument provides outstanding separation peak capacity and detection sensitivity. Workflow principles to optimally apply tile-based F-ratio analysis are also presented.

Above: Muscle tissue from the Argentinian pacu fish was grinded, freeze dried, and split between two vials for storage. In order to account for fish & vial heterogeneity, four extracts were prepared from vial 1, and four from vial 2, which were pooled prior to derivatization.

Spiked and unspiked fish samples

50 ppm metabolite standard mix

	1	1					
ID	¹ <i>t</i> _R (s)	² t _R (s)	Signal	ID	¹ <i>t</i> _R (s)	² t _R (s)	Signal
D-glucose-6-phosphate	1032	1.4	163456	Uracil	648	1.53	179440
Methylmalonic acid	478	1.72	2256384	Creatinine	802	1.88	590336
Oxalic acid	430	1.43	248832	Pyroglutamic acid	848	1.43	681968
Myo-inositol	1068	1.78	905600	Myristic acid	1290	0.15	8688
Malonic acid	486	1.6	1581056	Maleic acid	614	1.51	1334784
Pyruvate	370	1.27	916480	Glutamic acid	914	1.17	174400
Maltose	1472	0.6	18352	Fumaric acid	588	1.91	8325568
Aspartic acid	820	1.11	13240	Gluconic acid	1036	0.2	163456
Succinic acid	592	1.66	3726848	D-glucose	968	1.14	273536
Glycerol-3-phosphate	920	0.07	376960	D-galactose	962	1.16	417728
L-glutamic acid	820	1.58	58936	L-serine	526	1.73	13944
L-lysine	828	1.51	10816	L-threonine	370	1.27	11704
L-alanine	322	1.12	809696	L-cystine	410	1.65	3108864
L-methionine	720	1.83	22432	L-proline	938	1.09	9776
DL-lactic acid	656	1.75	424448	4-methylvaleric acid	626	1.43	73216
Isovaleric acid	618	1.67	59288	Glycine	358	1.9	46656

A standard mixture of 32 metabolites was used to generate an in-house library with retention times and signal of the tallest modulation for each analyte. These 32 metabolites were later spiked into pacu fish samples for analyte discovery by tile-based F-ratio analysis and quantification. Retention times will be used to mine the hit list for the spikes and signals will be used for quantification.

Sonia Schöneich¹, Sarah E. Prebihalo¹, Celina Monzòn², Robert E. Synovec¹ ¹Department of Chemistry, University of Washington, Seattle WA ²Universidad Nacional del Nordeste, Corrientes, Argentina

Sample preparation

Muscular tissue -Grinded -Freeze dried 200 µL of each vial pooled after extraction procedure 200 µL used fo derivatizatior

GC×GC-TOFMS chromatograms of the selective

Below: Due to the nature of metabolites, derivatization after extraction is

necessary prior to GC analysis. For each sample, derivatization was performed via

a two-step process, as illustrated below: First, oximation was performed with the

addition of 300 µL of a methoxyamine/pyridine solution followed by heat for 90

minutes. Second, trimethylsilylation was employed using 700 µL of N,O,-

The signals in the last column of the tables to the left were used to generate the histogram above. The 12 analytes with the lowest signal were the most difficult to identify reliably and are expected to be the most difficult analytes to discover by tile-based F-ratio analysis by the spikes alone. It is expected that the other 20 analytes with higher signal will be higher on the F-ratio hit list.

with native traces of the oiked metabolites. Left eplicate showing there essentially no either shifting on dimension. The insert is provided for better visualization of the lack shifting. Right: L-cystine peak for the spiked (blue) and unspiked (red) representative for the narrower peaks with $^{2}W_{\rm h}$ =200 ms. The inset is a zoom-in of tallest modulated provided visualization purposes.

Examples of analytes

To select the correct tile size for tile-based F-ratio analysis, an overlay of all replicates should be plotted to evaluate the retention time shifting on both ¹D and ²D. When selecting the size on ¹D, both retention time shifting and the number of modulations should be taken into account. The size of the ²D tile size should be selected as to account for the width of the modulated ²D peaklets as well as any retention time shift. A tile that is too small may result in many redundant hits or false positives in the hit list, while a tile size too large may not discover small analytes that may be in the same tile as another analyte with greater signal. In this study, each analyte is modulated 2-4 times, so a ¹D tile size of 6 modulations, for or 12 s, will account for any shifts on ¹D. The ${}^{2}W_{b}$ ranged from 200 ms to 400 ms, which supports setting the ²D tile size to 400 ms. For this data set, the selected tile size on ¹D was 12 seconds (6 modulations) and 400 ms on ²D.

F-ratio analysis is characterized as a supervised, non-targeted method, where the classes are known but the components that distinguish between classes are unknown. Notably, F-ratio emphasizes true class-distinguishing ability over absolute signal. F-ratio values can range from zero (little variance between classes), and infinity, where the magnitude scales with the extent of between class variance relative to within-class variance.

F-ratio hit list for metabolite

The F-ratio hit list was generated using the tile size of 12 s (6 modulations) on ¹D and 400 ms on ²D. A total of 22 metabolite spikes were discovered in the top 32 hits with the hit list generating a total of 1179 hits (distribution to the right). The hit list was prepared after mining and removing spurious hits trimethyl silanol and various including trimethylsilylated phosphoric acid fragments. To reduce the number of redundant hits, the cluster window was 8 s on ¹D and 200 ms on ²D and the number of m/z required to pass the signal-to-noise (S/N) threshold of 50 was set to 10 m/z. The F-ratio is the average F-ratio of the top 3 m/z. The metabolites that appear higher on the hit list are most likely those with higher signal in the standard mixture and have significantly different signals relative to the unspiked fish samples. Some analytes may fall further down the list due to greater within class variance, while others may be native to the unspiked samples. Retention times are reported and retention time shifts relative to the standard mixture were calculated as $\Delta^n t_R = t_{R,spiked} - t_{R,std}$.

Metabolite quantification

F-ratio analysis provides the benefit of finding analytes with retention time shift on either ¹D or ²D. While the standard addition method is a popular method for quantification, it relies on analyte spikes to retain the same retention time as it 👡 would in the neat standard mix. The example to the ζ right displays the highest $\stackrel{-}{\leftarrow} 2$ signal *m/z* 99 of uracil in the spiked and unspiked fish samples that is shifted by 850 ms relative to the modulated ²D uracil peak in the standard mix. This hit would not have been easily discovered without the use of F-ratio.

Environmental pooled + spikes After analyte discov tile-based F-ratio a the spiked metabolites top 50 hits were qua using the signal for tallest modulated pea was systematically using the pin location the F-ratio hit list replicates. The sta addition method was determine the concer of the metabolites na the fish was in part million (ppm) and multiplied by the d factor. Hits higher on were in general low concentration in unspiked samples.

Hit #	ID	F-ratio	¹ <i>t</i> _R (s)	² t _R (s)	$\Delta^{1}t_{R}(s)$	$\Delta^2 t_R (ms)$
1	Fumaric acid	1047	590	1.84	2	-70
4	Malonic acid	931	488	1.57	2	-30
5	Pyroglutamic acid	837	850	1.42	2	-10
6	L-glutamic acid	831	822	1.54	2	-40
7	Uracil	792	646	0.68	2	-850
8	Maleic acid	703	614	1.47	0	-40
10	4-methylvaleric acid	676	588	1.29	0	-140
11	Succinic acid	667	594	1.62	2	-40
12	Myo-inositol	649	1068	1.71	0	-70
13	Glycerol-3-phosphate	646	920	0.03	0	-40
14	DL-lactic acid	645	660	1.68	4	-70
15	Gluconic acid	642	1036	0.14	0	-60
16	D-glucose-6-phosphate	640	1032	1.3	0	-60
17	D-galactose	637	964	1.21	2	50
18	Oxalic acid	596	434	1.43	4	0
19	D-glucose	581	970	1.07	2	-70
20	L-cystine	503	412	1.6	2	-50
21	Maltose	492	1470	0.53	-2	-70
22	Methylmalonic acid	464	480	1.81	2	110
24	Pyruvate	321	372	1.28	2	10
26	L-alanine	286	326	1.14	4	20
30	Glycine	229	358	1.05	0	-850

and by	Hit #	ID	Concentration (ppm)
	1	Fumaric acid	0.90
naiysis,	4	Malonic acid	0.09
s in the	5	Pyroglutamic acid	1.35
antified	6	L-glutamic acid	1.55
or the	7	Uracil	37.10
ak. This	8	Maleic acid	1.04
done	10	4-methylvaleric acid	5.02
ns from	11	Succinic acid	0.42
for all	12	Myo-inositol	13.30
andard	13	Glycerol-3-phosphate	0.33
anuaru	14	DL-lactic acid	1.56
	15	Gluconic acid	2.36
itration	16	D-glucose-6-phosphate	1.22
ative to	17	D-galactose	17.43
rts per	18	Oxalic acid	1.05
then	19	D-glucose	39.99
dilution	20	L-cystine	79.72
the list	21	Maltose	20.19
wer in	22	Methylmalonic acid	0.08
the	24	Pyruvate	0.64
the	26	L-alanine	132.58
	30	Glycine	19.52

References

- L.C. Marney, W.C. Siegler, B.A. Parsons, J.C. Hoggard B.W. Wright, R.E. Synovec, Talanta. 2013, 115, 887-895.
- B.A. Parsons, L.C. Marney, W.C. Siegler, J.C. Hoggard, B.W. Wright, R.E. Synovec. Anal. Chem. 2015, 87 (7), 3812-3819.
- B.A. Parsons, D.K. Pinkerton, B.W. Wright, R.E. Synovec, J. Chromatogr. A. 2016, 1440, 179-190.
- N.E. Watson, B.A. Parsons, R.E. Synovec, J. Chromatrogr. A. 2016, 1459, 101-111.
- R.C. Reaser, B.W. Wright, R.E. Synovec, *Anal. Chem.* 2017, 89, 3606-3612.